Plastic Crystal Neopentyl Glycol/Multiwall Carbon Nanotubes Composites for Highly Efficient Barocaloric Refrigeration System
Plastic crystal neopentyl glycol (NPG) exhibits colossal barocaloric effect with high entropy changes. However, their application is restricted in several aspects, such as low thermal conductivity, substantial supercooling effect, and poor springback properties. In this work, multi-walled carbon nan...
Saved in:
Published in | Journal of thermal science Vol. 33; no. 1; pp. 383 - 393 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Berlin/Heidelberg
Springer Berlin Heidelberg
2024
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Plastic crystal neopentyl glycol (NPG) exhibits colossal barocaloric effect with high entropy changes. However, their application is restricted in several aspects, such as low thermal conductivity, substantial supercooling effect, and poor springback properties. In this work, multi-walled carbon nanotubes (MWCNTs) with ultra-high thermal conductivity and high mechanical strength were selected for performance enhancement of NPG. The optimal mixing ratio was determined to be NPG with 3 wt% MWCNTs composites, which showed a 6 K reduction in supercooling without affecting the phase change enthalpy. Subsequently, comprehensive performance of the composites with optimal mixing ratio was compared with pure NPG. At 40 MPa, 390 J·K
−1
·kg
−1
change in entropy and 9.9 K change in temperature were observed. Furthermore, the minimum driving pressure required to achieve reversible barocaloric effect was reduced by 19.2%. In addition, the thermal conductivity of the composite was increased by approximately 28%, significantly reducing the heat exchange time during a barocaloric refrigeration cycle. More importantly, ultra-high pressure release rate resulted in a 73.7% reduction in the springback time of the composites, offering new opportunities for the recovery of expansion work. |
---|---|
ISSN: | 1003-2169 1993-033X |
DOI: | 10.1007/s11630-023-1891-y |