Comparison of X-ray computed tomography and coordinate-measuring system dimensional measurement for additive manufacturing parts using physical and simulation methods

•XCT's capability for dimensional metrology of AM parts is verified by CMS.•XCT beam hardening and XCT voxel size scale error are both investigated.•A new 3D algorithm to estimate uncertainty of the CMS mechanical filtering effect.•Simulation of CMS and XCT are conducted by virtual part with th...

Full description

Saved in:
Bibliographic Details
Published inMeasurement : journal of the International Measurement Confederation Vol. 229; p. 114414
Main Authors Liu, Weidong, Chen, Xiao, Zeng, Wenhan, Sun, Wenjuan, Gorman, David, Wilson, Alan, Qi, Qunfen, Scott, Paul, Jiang, Xiangqian, Lou, Shan
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.04.2024
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:•XCT's capability for dimensional metrology of AM parts is verified by CMS.•XCT beam hardening and XCT voxel size scale error are both investigated.•A new 3D algorithm to estimate uncertainty of the CMS mechanical filtering effect.•Simulation of CMS and XCT are conducted by virtual part with the AM surface texture. This paper aims to verify the capability of X-ray Computed Tomography (XCT) in the dimensional measurement of additive manufacturing (AM) parts by comparing it against a tactile coordinate-measuring system (CMS). Three factors are investigated: XCT beam hardening, XCT voxel size scale error, and CMS mechanical filtering effect. Their performances are compared via both physical and simulation experiments. The physical experiments show that the employed XCT beam hardening elimination aids in obtaining accurate inner dimensions but deteriorates external dimension measurements. XCT voxel size scale error can be compensated by either the two-sphere calibration or the CMS normalisation method. The physical measurement results also indicate that the dimensional deviation between XCT and CMS measurements is mainly due to the mechanical filter effect of CMS, which is further sustained by simulation measurements. The proposed 3D CMS probe scanning simulation method yields a reliable uncertainty estimation of the CMS mechanical filtering effect.
ISSN:0263-2241
1873-412X
DOI:10.1016/j.measurement.2024.114414