Biocompatible silver nanoparticles embedded in a PEG–PLA polymeric matrix for stimulated laser light drug release

The laser-induced release of a well-known hepatoprotective drug (silibinin, SLB) from a temperature-sensitive polymeric composite loaded with silver nanoparticles (Ag NPs) was investigated. The surface chemistry tuning and the specific design of Ag NPs are fundamental in view of the engineering of s...

Full description

Saved in:
Bibliographic Details
Published inJournal of nanoparticle research : an interdisciplinary forum for nanoscale science and technology Vol. 18; no. 6; p. 1
Main Authors Neri, F., Scala, A., Grimato, S., Santoro, M., Spadaro, S., Barreca, F., Cimino, F., Speciale, A., Saija, A., Grassi, G., Fazio, E.
Format Journal Article
LanguageEnglish
Published Dordrecht Springer Netherlands 01.06.2016
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The laser-induced release of a well-known hepatoprotective drug (silibinin, SLB) from a temperature-sensitive polymeric composite loaded with silver nanoparticles (Ag NPs) was investigated. The surface chemistry tuning and the specific design of Ag NPs are fundamental in view of the engineering of specific stimuli-responsive systems, able to control drug release in response to external stimuli. The release profiles of SLB from the newly synthesized PEG–PLA@Ag composite show strong dependences on laser wavelength and Ag NPs’ Surface Plasmon Resonance (SPR). The resonant laser light excites the SPR of the NPs and the absorbed energy is converted into heat due to electron–photon collisions. The heat generated from the nanometer-sized metal particles embedded within the polymer is efficient and strongly localized. The nanovector, irradiated by a relatively low-intensity laser but tuned specifically to the metal NPs’ SPR, releases the encapsulated drug with a higher efficiency than that not irradiated or irradiated with a laser wavelength far from the metal SPR. A combination of analytical techniques including UV–Vis, NMR, and FT-IR spectroscopy and scanning/transmission electron microscopy has been used to study the structural and morphological properties of the composite. The controllable specificity of this approach and the possibility of the SPR-mediated localized photothermal effect to be usefully applied in aqueous environments are the relevant advances of the proposed system for photothermal therapies that make use of visible optical radiation or for the drug delivery in proximity of the tumor cells.
ISSN:1388-0764
1572-896X
DOI:10.1007/s11051-016-3467-1