A fuzzy logic based buffer management scheme with traffic differentiation support for delay tolerant networks

Delay tolerant networks (DTNs) are an emerging class of wireless networks which enable data delivery even in the absence of end-to-end connectivity. Under these circumstances, message replication may be applied to increase the delivery ratio. The requirement of long term storage and message replicat...

Full description

Saved in:
Bibliographic Details
Published inTelecommunication systems Vol. 68; no. 2; pp. 319 - 335
Main Authors Jain, Sweta, Chawla, Meenu
Format Journal Article
LanguageEnglish
Published New York Springer US 01.06.2018
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Delay tolerant networks (DTNs) are an emerging class of wireless networks which enable data delivery even in the absence of end-to-end connectivity. Under these circumstances, message replication may be applied to increase the delivery ratio. The requirement of long term storage and message replication puts a burden on network resources such as buffer and bandwidth. Buffer management is an important issue which greatly affects the performance of routing protocols in DTNs. Two main issues in buffer management are drop decision when buffer overflow occurs and scheduling decision when a transmission opportunity arises. The objective of this paper is to propose an enhancement to the Custom Service Time Scheduling traffic differentiation scheme by integrating it with a fuzzy based buffer ranking mechanism based on three message properties, namely, number of replicas, message size and remaining time-to-live. It uses fuzzy logic to determine outgoing message order and to decide which messages should be discarded within each traffic class queue. Results of simulation study show that the proposed fuzzy logic-based traffic differentiation scheme achieves improved delivery performance over existing traffic differentiation scheme for DTNs.
ISSN:1018-4864
1572-9451
DOI:10.1007/s11235-017-0394-0