Regression Analysis of Misclassified Current Status Data with Informative Observation Times

Misclassified current status data arises if each study subject can only be observed once and the observation status is determined by a diagnostic test with imperfect sensitivity and specificity. For the situation, another issue that may occur is that the observation time may be correlated with the i...

Full description

Saved in:
Bibliographic Details
Published inJournal of systems science and complexity Vol. 36; no. 3; pp. 1250 - 1264
Main Authors Wang, Wenshan, Xu, Da, Zhao, Shishun, Sun, Jianguo
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Berlin Heidelberg 01.06.2023
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Misclassified current status data arises if each study subject can only be observed once and the observation status is determined by a diagnostic test with imperfect sensitivity and specificity. For the situation, another issue that may occur is that the observation time may be correlated with the interested failure time, which is often referred to as informative censoring or observation times. It is well-known that in the presence of informative censoring, the analysis that ignores it could yield biased or even misleading results. In this paper, the authors consider such data and propose a frailty-based inference procedure. In particular, an EM algorithm based on Poisson latent variables is developed and the asymptotic properties of the resulting estimators are established. The numerical results show that the proposed method works well in practice and an application to a set of real data is provided.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1009-6124
1559-7067
DOI:10.1007/s11424-023-2411-6