DOA estimation with double L-shaped array based on Hadamard product and joint diagonalization in the presence of sensor gain-phase errors

A method with double L-shaped array for direction-of-arrival (DOA) estimation in the presence of sensor gain-phase errors is presented. The reason for choosing double L-shaped array is that the shared elements between sub-arrays are the most and rotation invariant property can be applied for this ar...

Full description

Saved in:
Bibliographic Details
Published inMultidimensional systems and signal processing Vol. 30; no. 1; pp. 465 - 491
Main Authors Hu, Weiwei, Xu, Guozheng
Format Journal Article
LanguageEnglish
Published New York Springer US 01.01.2019
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:A method with double L-shaped array for direction-of-arrival (DOA) estimation in the presence of sensor gain-phase errors is presented. The reason for choosing double L-shaped array is that the shared elements between sub-arrays are the most and rotation invariant property can be applied for this array. The proposed method is introduced as follows. (1) If the number of signal is one, first the gain errors are estimated and removed with the diagonal of the covariance matrix of the array output. Then the array is rotated by an unknown angle and DOA can be estimated with the relationship between signal subspace and steering vector of signal. (2) If signals are more than one, the method for eliminating gain errors is the same with the previous case, and then the phase errors are removed by the Hadamard product of the (cross) covariance matrix and its conjugate. After the errors are eliminated, the DOAs can be estimated by rotation invariant property and orthogonal joint diagonalization for the Hadamard product. This method requires neither calibrated sources nor multidimensional parameter search, and its performance is independent of the phase errors. Simulation results demonstrate the effectiveness of the proposed method.
ISSN:0923-6082
1573-0824
DOI:10.1007/s11045-018-0565-5