A Class of Solvable Multiple Entry Problems with Forced Exits
We study an optimal investment problem with multiple entries and forced exits. A closed form solution of the optimisation problem is presented for general underlying diffusion dynamics and a general running payoff function in the case when forced exits occur on the jump times of a Poisson process. F...
Saved in:
Published in | Applied mathematics & optimization Vol. 79; no. 3; pp. 593 - 619 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
New York
Springer US
01.06.2019
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | We study an optimal investment problem with multiple entries and forced exits. A closed form solution of the optimisation problem is presented for general underlying diffusion dynamics and a general running payoff function in the case when forced exits occur on the jump times of a Poisson process. Furthermore, we allow the investment opportunity to be subject to the risk of a catastrophe that can occur at the jumps of the Poisson process. More precisely, we attach IID Bernoulli trials to the jump times and if the trial fails, no further re-entries are allowed. Interestingly, we find in the general case that the optimal investment threshold is independent of the success probability is the Bernoulli trials. The results are illustrated with explicit examples. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ISSN: | 0095-4616 1432-0606 |
DOI: | 10.1007/s00245-017-9449-6 |