Integrating GPS and GLONASS to accelerate convergence and initialization times of precise point positioning
The main challenge of dual-frequency precise point positioning (PPP) is that it requires about 30 min to obtain centimeter-level accuracy or to succeed in the first ambiguity-fixing. Currently, PPP is generally conducted with GPS only using the ionosphere-free combination. We adopt a single-differen...
Saved in:
Published in | GPS solutions Vol. 18; no. 3; pp. 461 - 471 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.07.2014
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | The main challenge of dual-frequency precise point positioning (PPP) is that it requires about 30 min to obtain centimeter-level accuracy or to succeed in the first ambiguity-fixing. Currently, PPP is generally conducted with GPS only using the ionosphere-free combination. We adopt a single-differenced (SD) between-satellite PPP model to combine the GPS and GLONASS raw dual-frequency carrier phase measurements, in which the GPS satellite with the highest elevation is selected as the reference satellite to form the SD between-satellite measurements. We use a 7-day data set from 178 IGS stations to investigate the contribution of GLONASS observations to both ambiguity-float and ambiguity-fixed SD PPP solutions, in both kinematic and static modes. In ambiguity-fixed PPP, we only attempt to fix GPS integer ambiguities, leaving GLONASS ambiguities as float values. Numerous experimental results show that PPP with GLONASS and GPS requires much less convergence time than that of PPP with GPS alone. For ambiguity-float PPP, the average convergence time can be reduced by 45.9 % from 22.9 to 12.4 min in static mode and by 57.9 % from 40.6 to 17.7 min in kinematic mode, respectively. For ambiguity-fixed PPP, the average time to the first-fixed solution can be reduced by 27.4 % from 21.6 to 15.7 min in static mode and by 42.0 % from 34.4 to 20.0 min in kinematic mode, respectively. Experimental results also show that the less the GPS satellites are used in float PPP, the more significant is the reduction in convergence time when adding GLONASS observations. In addition, on average, more than 4 GLONASS satellites can be observed for most 2-h observation sessions. Nearly, the same improvement in convergence time reduction is achieved for those observations. |
---|---|
ISSN: | 1080-5370 1521-1886 |
DOI: | 10.1007/s10291-013-0345-5 |