Star-shaped pi-conjugated oligomers and their applications in organic electronics and photonics

Strategies for the design and construction of non-linear, 2D and 3D conjugated macromolecules are presented in this critical review. The materials, termed here as star-shaped structures, feature a core unit which may or may not provide conjugated links between arms that radiate like spokes from a ce...

Full description

Saved in:
Bibliographic Details
Published inChemical Society reviews Vol. 39; no. 7; pp. 2695 - 2728
Main Authors Kanibolotsky, Alexander L, Perepichka, Igor F, Skabara, Peter J
Format Journal Article
LanguageEnglish
Published England 01.07.2010
Online AccessGet full text

Cover

Loading…
More Information
Summary:Strategies for the design and construction of non-linear, 2D and 3D conjugated macromolecules are presented in this critical review. The materials, termed here as star-shaped structures, feature a core unit which may or may not provide conjugated links between arms that radiate like spokes from a central axle. The arms of the macromolecules consist of linear oligomers or irregular conjugated chains lacking a formal repeat unit. The cores range from simple atoms to single or fused aromatic units and can provide a high level of symmetry to the overall structure. The physical properties of the star-shaped materials can be markedly different to their simple, linear conjugated analogues. These differences are highlighted and we report on anomalies in absorption/emission characteristics, electronic energy levels, thermal properties and morphology of thin films. We provide numerous examples for the application of star-shaped conjugated macromolecules in organic semiconductor devices; a comparison of their device performance with those comprising analogous linear systems provides clear evidence that the star-shaped compounds are an important class of material in organic electronics. Moreover, these structures are monodisperse, well-defined, discrete molecules with 100% synthetic reproducibility, and possess high purity and excellent solubility in common organic solvents. They feature many of the attributes of plastic materials (good film-forming properties, thermal stability, flexibility) and are therefore extremely attractive alternatives to conjugated polymers (210 references).
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0306-0012
1460-4744
DOI:10.1039/b918154g