On the Acceleration of a Superconducting Carrier of a Cryogenic Fuel Target by a Sequence of Current-Carrying Solenoids

The Lebedev Physical Institute (LPI) actively develops innovative technologies for creating the HTSC—MAGLEV accelerator for delivering a cryogenic fuel target (CFT) placed in a levitating HTSC-carrier to the ICF chamber for interacting with laser radiation. The LPI approach is based on the phenomeno...

Full description

Saved in:
Bibliographic Details
Published inBulletin of the Lebedev Physics Institute Vol. 50; no. 8; pp. 332 - 336
Main Authors Aleksandrova, I. V., Agapov, M. N., Akunets, A. A., Koresheva, E. R.
Format Journal Article
LanguageEnglish
Published Moscow Pleiades Publishing 01.08.2023
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The Lebedev Physical Institute (LPI) actively develops innovative technologies for creating the HTSC—MAGLEV accelerator for delivering a cryogenic fuel target (CFT) placed in a levitating HTSC-carrier to the ICF chamber for interacting with laser radiation. The LPI approach is based on the phenomenon of HTSC quantum levitation in a gradient magnetic field. Acceleration is provided by a sequence of current-carrying solenoids, and HTSC-carrier levitation occurs due to the use of a magnetic rail, along which the solenoids are placed. A prototype of an elementary block for accelerating an HTSC-carrier is developed and its motion control processes are studied. For this purpose, a special system of operational control of the acceleration block is developed and tested. The HTSC-carrier acceleration up to 1 m/s at the acceleration length L a = 20 cm is demonstrated using only one pair of matched solenoids. The results obtained are of practical importance in the area of creating noncontact systems for CFT delivery due to constructing a linear magnetic track by connecting one elementary acceleration unit with many others to achieve a required CFT injection rates from 20 to 200 m/s and higher.
ISSN:1068-3356
1934-838X
DOI:10.3103/S106833562308002X