High dielectric permittivity and low loss in PVDF filled by core-shell Zn@ZnO particles
In this study, metal-semiconductor Zn@ZnO core-shell particles were prepared by the heat treatment of raw Zn powder under air atmosphere, and the prepared Zn@ZnO particles were incorporated into poly(vinylidene fluoride) (PVDF) to obtain high dielectric permittivity polymer. The results indicate tha...
Saved in:
Published in | Journal of polymer research Vol. 23; no. 3; p. 1 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Dordrecht
Springer Netherlands
01.03.2016
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | In this study, metal-semiconductor Zn@ZnO core-shell particles were prepared by the heat treatment of raw Zn powder under air atmosphere, and the prepared Zn@ZnO particles were incorporated into poly(vinylidene fluoride) (PVDF) to obtain high dielectric permittivity polymer. The results indicate that the Zn@ZnO particles remarkably increased the dielectric constant of the PVDF composites compared with the raw Zn/PVDF due to the duplex interfacial polarizations induced by ZnO-Zn interface and ZnO-PVDF interface. Moreover, the dielectric permittivity of the Zn@ZnO/PVDF composites can be further optimized by adjusting the thickness of ZnO shell. The dielectric loss and conductivity were still remained at low acceptable level owing to the presence of ZnO shell between Zn core and PVDF matrix which serves as an interlayer between the Zn cores preventing them from contacting with each other. The developed Zn@ZnO/PVDF polymer composites with high dielectric constant and low loss are potential for embedded capacitor applications. |
---|---|
ISSN: | 1022-9760 1572-8935 |
DOI: | 10.1007/s10965-016-0941-5 |