Existence, uniqueness and blow-up of solutions for the 3D Navier–Stokes equations in homogeneous Sobolev–Gevrey spaces

We show existence and uniqueness of solutions for the classical Navier–Stokes equations in Sobolev–Gevrey spaces H ˙ a , σ s ( R 3 ) , where s ∈ ( 1 / 2 , 3 / 2 ) , a > 0 and σ ≥ 1 ; furthermore, we present some blow-up criteria considering these same spaces with σ > 1 .

Saved in:
Bibliographic Details
Published inComputational & applied mathematics Vol. 39; no. 2
Main Authors Braz e Silva, P., Melo, W. G., Rocha, N. F.
Format Journal Article
LanguageEnglish
Published Cham Springer International Publishing 01.05.2020
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:We show existence and uniqueness of solutions for the classical Navier–Stokes equations in Sobolev–Gevrey spaces H ˙ a , σ s ( R 3 ) , where s ∈ ( 1 / 2 , 3 / 2 ) , a > 0 and σ ≥ 1 ; furthermore, we present some blow-up criteria considering these same spaces with σ > 1 .
ISSN:2238-3603
1807-0302
DOI:10.1007/s40314-020-1094-z