An optimal solution for magnetohydrodynamic nanofluid flow over a stretching surface with constant heat flux and zero nanoparticles flux
This article examines the hydromagnetic three-dimensional flow of viscous nanoliquid. A bidirectional linear stretching surface has been used to create the flow. Novel features regarding Brownian motion and thermophoresis have been studied by employing Buongiorno model to examine the slip velocity o...
Saved in:
Published in | Neural computing & applications Vol. 29; no. 12; pp. 1555 - 1562 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
London
Springer London
01.06.2018
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | This article examines the hydromagnetic three-dimensional flow of viscous nanoliquid. A bidirectional linear stretching surface has been used to create the flow. Novel features regarding Brownian motion and thermophoresis have been studied by employing Buongiorno model to examine the slip velocity of nanoparticle. Viscous liquid is electrically conducting subject to uniform applied magnetic field. Problem formulation in boundary-layer region is performed for low magnetic Reynolds number. Simultaneous effects of constant heat flux and zero nanoparticles flux conditions are utilized at boundary. Appropriate transformations correspond to the strongly nonlinear ordinary differential expressions. The resulting nonlinear systems have been solved through the optimal homotopy analysis method. Graphs have been sketched in order to analyze that how the temperature and concentration profiles are affected by various physical parameters. Further the coefficients of skin-friction and heat transfer rate have been numerically computed and discussed. Our findings show that the temperature distribution has a direct relationship with the magnetic parameter. Moreover, the temperature distribution and thermal boundary-layer thickness are higher for hydromagnetic flow in comparison with the hydrodynamic flow. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ISSN: | 0941-0643 1433-3058 |
DOI: | 10.1007/s00521-016-2685-x |