A new DDA model for kinematic analyses of rockslides on complex 3-D terrain

Landslides are common phenomena in mountainous regions worldwide. Over the past two decades, catastrophic rockslides in mountainous regions have caused serious damage and fatalities. To develop effective preventive countermeasures, it is important to estimate the kinematic behavior of displaced mass...

Full description

Saved in:
Bibliographic Details
Published inBulletin of engineering geology and the environment Vol. 77; no. 2; pp. 555 - 571
Main Authors Zhang, Hong, Liu, Shu-guang, Wang, Wei, Zheng, Lu, Zhang, Ying-bin, Wu, Yan-qiang, Han, Zheng, Li, Yan-ge, Chen, Guang-qi
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Berlin Heidelberg 01.05.2018
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Landslides are common phenomena in mountainous regions worldwide. Over the past two decades, catastrophic rockslides in mountainous regions have caused serious damage and fatalities. To develop effective preventive countermeasures, it is important to estimate the kinematic behavior of displaced masses after slope failures, such as the velocity, run-out distance, and extent. Discontinuous deformation analysis (DDA) is an appropriate tool to analyze the dynamics, kinematics, and deformability of a block assembly. Many studies have reported applications of DDA to kinematic analyses of rockslides on two-dimensional (2-D) terrain. However, because of the restrictions of numerical techniques, few kinematic analyses of rockslides on three-dimensional (3-D) terrain have been performed using DDA. This study developed a new DDA model for the analysis of rockslides on 3-D terrain. First, contact treatment techniques for the 3-D model were developed to create an accurate and efficient computational scheme. The new model was then verified by the benchmark tests on the four basic types of block motion on 3-D terrain. Finally, the new model was applied to a designed rockslide with complex terrain to demonstrate its practical applicability. The results indicate that the new 3-D DDA model is an effective tool to analyze 3-D rockslides and could potentially be used to optimize protection designs for rockslides.
ISSN:1435-9529
1435-9537
DOI:10.1007/s10064-016-0971-6