Fabrication, characterization, and application of biocomposites from poly(lactic acid) with renewable rice husk as reinforcement

Filaments for three-dimensional printing were fabricated from composites based from biodegradable Poly(lactic Acid) (PLA) and renewable rice husk (RH). Acrylic acid (AA)-grafted PLA (PLA-g-AA) and coupling agent-treated rice husk (TRH) were incorporated to improve the properties of PLA/RH biocomposi...

Full description

Saved in:
Bibliographic Details
Published inJournal of polymer research Vol. 26; no. 2; pp. 1 - 9
Main Authors Wu, Chin-San, Tsou, Chi-Hui
Format Journal Article
LanguageEnglish
Published Dordrecht Springer Netherlands 01.02.2019
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Filaments for three-dimensional printing were fabricated from composites based from biodegradable Poly(lactic Acid) (PLA) and renewable rice husk (RH). Acrylic acid (AA)-grafted PLA (PLA-g-AA) and coupling agent-treated rice husk (TRH) were incorporated to improve the properties of PLA/RH biocomposites. The biocomposite morphology, tensile properties, water absorption, and biodegradability were investigated. PLA-g-AA/TRH demonstrated superior tensile properties than PLA/RH because of the improved compatibility between the polymer and the TRH. TRH was evenly dispersed in the PLA-g-AA, brought about by ester reaction; consequently, branched and three-dimensional networks structures were generated. These PLA-g-AA/TRH biocomposites can be used as biodegradable materials or filaments for 3D printing applications because of their low cost and excellent properties.
ISSN:1022-9760
1572-8935
DOI:10.1007/s10965-019-1710-z