Bathynomus giganteus (Isopoda: Cirolanidae) and the canyon: a population genetics assessment of De Soto Canyon as a glacial refugium for the giant deep-sea isopod

Population genetics has gained popularity as a method to discover glacial refugia in terrestrial species, but has only recently been applied to the marine realm. The last glacial maxima occurred 20,000 years ago, decreasing sea levels by 120 m and exposing much of the continental shelf in the northe...

Full description

Saved in:
Bibliographic Details
Published inHydrobiologia Vol. 825; no. 1; pp. 211 - 225
Main Authors Timm, L. E., Moahamed, B., Churchill, D. A., Bracken-Grissom, H. D.
Format Journal Article
LanguageEnglish
Published Cham Springer International Publishing 01.12.2018
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Population genetics has gained popularity as a method to discover glacial refugia in terrestrial species, but has only recently been applied to the marine realm. The last glacial maxima occurred 20,000 years ago, decreasing sea levels by 120 m and exposing much of the continental shelf in the northern Gulf of Mexico, with the exception of De Soto Canyon (2100 m depth). The goal of this study was to determine whether population dynamics of the giant deep-sea isopod, Bathynomus giganteus , were better explained by habitat diversity or by the past presence of a marine glacial refugium in De Soto Canyon. To accomplish this we (1) measured genetic diversity in De Soto Canyon and adjacent regions, (2) characterized gene flow and connectivity between these regions, and (3) investigated historical changes to population size. We sequenced three mitochondrial loci (12S, 16S, and COI) from 212 individuals and also performed a next-generation sequencing pilot study using double digest Restriction site-Associated DNA sequencing. We found high genetic diversity and connectivity throughout the study regions, migration between all three regions, low population differentiation, and evidence of population expansion. This study suggests that habitat heterogeneity, rather than the presence of a glacial refugium, has had an historical effect on the population dynamics of B. giganteus .
ISSN:0018-8158
1573-5117
DOI:10.1007/s10750-018-3563-6