Property-performance relationship of core-shell structured black TiO2 photocatalyst for environmental remediation
Understanding the relationship between the properties and performance of black titanium dioxide with core-shell structure (CSBT) for environmental remediation is crucial for improving its prospects in practical applications. In this study, CSBT was synthesized using a glycerol-assisted sol-gel appro...
Saved in:
Published in | Frontiers of environmental science & engineering Vol. 17; no. 9; p. 111 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Beijing
Higher Education Press
01.09.2023
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Understanding the relationship between the properties and performance of black titanium dioxide with core-shell structure (CSBT) for environmental remediation is crucial for improving its prospects in practical applications. In this study, CSBT was synthesized using a glycerol-assisted sol-gel approach. The effect of different water-to-glycerol ratios (W:G = 1:0, 9:1, 2:1, and 1:1) on the semiconducting and physicochemical properties of CSBT was investigated. The effectiveness of CSBT in removing phenolic compounds (PHCs) from real agro-industrial wastewater was studied. The CSBT synthesized with a W:G ratio of 9:1 has optimized properties for enhanced removal of PHCs. It has a distinct core-shell structure and an appropriate amount of Ti
3+
cations (11.18%), which play a crucial role in enhancing the performance of CSBT. When exposed to visible light, the CSBT performed better: 48.30% of PHCs were removed after 180 min, compared to only 21.95% for TiO
2
without core-shell structure. The CSBT consumed only 45.5235 kWh/m
3
of electrical energy per order of magnitude and cost $2.4127 per unit volume of treated agro-industrial wastewater. Under the conditions tested, the CSBT demonstrated exceptional stability and reusability. The CSBT showed promising results in the treatment of phenols-containing agro-industrial wastewater. |
---|---|
ISSN: | 2095-2201 2095-221X |
DOI: | 10.1007/s11783-023-1711-3 |