Hydrophobic MAO/FSG coating based TENG for self-healable energy harvesting and self-powered cathodic protection

An organic/inorganic hybrid coating with self-healable hydrophobicity is prepared as triboelectrical layer by micro-arc oxidation (MAO) and fluorinated sol-gel (FSG) coating. The MAO/FSG hybrid coating-based TENG (MF-TENG) has a current output of 31 µA and voltage output of 870 V, which is eight tim...

Full description

Saved in:
Bibliographic Details
Published inScience China. Technological sciences Vol. 65; no. 3; pp. 726 - 734
Main Authors Liu, YuPeng, Sun, WeiXiang, Li, TingHua, Wang, DaoAi
Format Journal Article
LanguageEnglish
Published Beijing Science China Press 01.03.2022
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract An organic/inorganic hybrid coating with self-healable hydrophobicity is prepared as triboelectrical layer by micro-arc oxidation (MAO) and fluorinated sol-gel (FSG) coating. The MAO/FSG hybrid coating-based TENG (MF-TENG) has a current output of 31 µA and voltage output of 870 V, which is eight times that of the MAO based TENG. Compared with organic coating, the organic/inorganic hybrid coating has good wear resistance. When the fluorine composition on the surface of the coating is damaged, the self-healing hydrophobicity and electrical output are achieved by transferring loaded perfluorosilane to the damaged surface. The fluorinated sol-gel coating is hydrophobic, which ensures that the coating has good corrosion resistance. Also, the electricity generated in triboelectrification could improve the anti-corrosion performance by cathodic protection. Based on the anti-corrosion, anti-wear and self-healing properties, the MF-TENG has potential applicability in the field of energy collection, energy supply, and corrosion protection.
AbstractList An organic/inorganic hybrid coating with self-healable hydrophobicity is prepared as triboelectrical layer by micro-arc oxidation (MAO) and fluorinated sol-gel (FSG) coating. The MAO/FSG hybrid coating-based TENG (MF-TENG) has a current output of 31 µA and voltage output of 870 V, which is eight times that of the MAO based TENG. Compared with organic coating, the organic/inorganic hybrid coating has good wear resistance. When the fluorine composition on the surface of the coating is damaged, the self-healing hydrophobicity and electrical output are achieved by transferring loaded perfluorosilane to the damaged surface. The fluorinated sol-gel coating is hydrophobic, which ensures that the coating has good corrosion resistance. Also, the electricity generated in triboelectrification could improve the anti-corrosion performance by cathodic protection. Based on the anti-corrosion, anti-wear and self-healing properties, the MF-TENG has potential applicability in the field of energy collection, energy supply, and corrosion protection.
Author Sun, WeiXiang
Liu, YuPeng
Wang, DaoAi
Li, TingHua
Author_xml – sequence: 1
  givenname: YuPeng
  surname: Liu
  fullname: Liu, YuPeng
  organization: State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Qingdao Center of Resource Chemistry and New Materials
– sequence: 2
  givenname: WeiXiang
  surname: Sun
  fullname: Sun, WeiXiang
  organization: Qingdao Center of Resource Chemistry and New Materials, Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences
– sequence: 3
  givenname: TingHua
  surname: Li
  fullname: Li, TingHua
  organization: Technical Center of China Tobacco Yunnan Industrial Co., Ltd
– sequence: 4
  givenname: DaoAi
  surname: Wang
  fullname: Wang, DaoAi
  email: wangda@licp.cas.cn
  organization: State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Qingdao Center of Resource Chemistry and New Materials
BookMark eNp9kF1LwzAUhoNMcM79AO8CXsflq216OcY-hOkunNchSdO1ozYz6ZT9ezMrCILm5uTA-5z3nPcaDFrXWgBuCb4nGGeTQAhnBGFKEMk5Q-ICDIlI89hhPIj_NOMoY5RcgXEIexwfEzkmfAjc6lR4d6icrg18nG4mi-clNE51dbuDWgVbwO38aQlL52GwTYkqqxqlGwtta_3uBCvl3234kqu26DUH92F9JI3qKlfEwQfvOmu62rU34LJUTbDj7zoCL4v5drZC683yYTZdI8NI2iGuGVcmwabIidYqSTijlGFBKRVpZngpiiTnghpVMp5pkZrEcFsYrDkpscZsBO76udH67RgXlHt39G20lDRlAicCcxZVpFcZ70LwtpQHX78qf5IEy3O0so9WxmjlOVopIpP9YkzdqfNtnVd18y9JezJEl3Zn_c9Of0Of2qWOtw
CitedBy_id crossref_primary_10_1002_adfm_202208372
crossref_primary_10_1039_D2NJ04639C
crossref_primary_10_1002_aesr_202200186
crossref_primary_10_1007_s11431_024_2744_5
crossref_primary_10_1002_adfm_202300764
crossref_primary_10_1088_1361_6463_acdd0c
crossref_primary_10_1007_s12274_023_5623_0
crossref_primary_10_1002_adem_202201442
crossref_primary_10_3390_mi13101586
crossref_primary_10_3390_s24020511
Cites_doi 10.1016/j.corsci.2016.11.008
10.1016/j.jcis.2019.07.035
10.1016/j.corsci.2017.08.029
10.1016/j.ceramint.2020.04.079
10.1039/C5RA26977F
10.1021/acsnano.6b07389
10.1002/aenm.201600665
10.1016/j.nanoen.2017.10.029
10.1021/acsami.0c03843
10.1016/j.corsci.2015.11.033
10.1016/j.nanoen.2019.05.007
10.1002/aenm.201301322
10.1002/adma.201704077
10.1021/acsnano.6b05815
10.1016/j.nanoen.2014.11.041
10.1016/j.nanoen.2020.105422
10.1016/j.matlet.2020.128000
10.1021/acsnano.5b02010
10.1007/s12274-017-1805-y
10.1039/C6SC02562E
10.1016/j.corsci.2018.09.021
10.1016/j.nanoen.2020.104524
10.1002/adfm.201304295
10.1007/s10971-015-3620-9
10.1016/j.corsci.2017.09.024
10.1016/j.cej.2016.06.028
10.1021/acs.chemmater.5b00731
10.1002/aenm.201501778
10.1021/nn4007708
10.1016/j.nanoen.2020.105112
10.1021/acsnano.5b03093
10.1021/acsnano.8b00140
10.1021/acsami.9b22649
10.1016/j.apmt.2020.100645
10.1002/adfm.201401168
ContentType Journal Article
Copyright Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021
Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021.
Copyright_xml – notice: Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021
– notice: Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021.
DBID AAYXX
CITATION
DOI 10.1007/s11431-021-1943-8
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1869-1900
EndPage 734
ExternalDocumentID 10_1007_s11431_021_1943_8
GroupedDBID -5B
-5G
-BR
-EM
-SC
-S~
-Y2
-~C
.VR
06D
0R~
0VY
1N0
29~
2B.
2C.
2J2
2JN
2JY
2KG
2KM
2LR
2VQ
2~H
30V
4.4
406
40D
40E
5VR
5VS
8TC
8UJ
92E
92I
92Q
93N
95-
95.
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAXDM
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABDZT
ABECU
ABFTD
ABFTV
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACZOJ
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEMSY
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFLOW
AFQWF
AFUIB
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMTXH
AMXSW
AMYLF
AOCGG
ARMRJ
ASPBG
AVWKF
AXYYD
AZFZN
B-.
BDATZ
BSONS
CAG
CAJEC
CCEZO
CEKLB
CHBEP
CJPJV
COF
CSCUP
CW9
DDRTE
DNIVK
DPUIP
EBLON
EBS
EIOEI
EJD
ESBYG
FA0
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
H13
HG6
HMJXF
HRMNR
HVGLF
HZ~
IJ-
IKXTQ
IWAJR
IXD
I~Z
J-C
JBSCW
JZLTJ
KOV
LLZTM
MA-
N2Q
NB0
NPVJJ
NQJWS
O9J
P9P
PF0
PT4
Q--
QOS
R89
RIG
ROL
RSV
S16
S3B
SAP
SCL
SEG
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
TCJ
TGP
TR2
TSG
TUC
U1G
U2A
U5M
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z5O
Z7R
Z7S
Z7V
Z7X
Z7Y
Z7Z
Z85
Z88
ZMTXR
~A9
AAPKM
AAYXX
ABBRH
ABDBE
ACMFV
ADHKG
AFDZB
AFOHR
AGQPQ
AHPBZ
ATHPR
AYFIA
CITATION
ABRTQ
ID FETCH-LOGICAL-c316t-4b34ac50cd91bba554322308222867c4f8d59482caf347b86c5c4edc0b41f0b03
IEDL.DBID U2A
ISSN 1674-7321
IngestDate Fri Jul 25 11:08:50 EDT 2025
Tue Jul 01 03:26:19 EDT 2025
Thu Apr 24 22:56:45 EDT 2025
Fri Feb 21 02:47:25 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords triboelectric nanogenerator
organic/inorganic hybrid coating
corrosion resistance
self-healing property
energy collection
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c316t-4b34ac50cd91bba554322308222867c4f8d59482caf347b86c5c4edc0b41f0b03
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2638058043
PQPubID 2043625
PageCount 9
ParticipantIDs proquest_journals_2638058043
crossref_primary_10_1007_s11431_021_1943_8
crossref_citationtrail_10_1007_s11431_021_1943_8
springer_journals_10_1007_s11431_021_1943_8
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-03-01
PublicationDateYYYYMMDD 2022-03-01
PublicationDate_xml – month: 03
  year: 2022
  text: 2022-03-01
  day: 01
PublicationDecade 2020
PublicationPlace Beijing
PublicationPlace_xml – name: Beijing
– name: Heidelberg
PublicationTitle Science China. Technological sciences
PublicationTitleAbbrev Sci. China Technol. Sci
PublicationYear 2022
Publisher Science China Press
Springer Nature B.V
Publisher_xml – name: Science China Press
– name: Springer Nature B.V
References Liu, Zheng, Li (CR4) 2019; 61
Xing, Jie, Cao (CR10) 2017; 42
Guo, Li, Cao (CR8) 2017; 11
Moschona, Plesu, Mezei (CR25) 2018; 145
Yang, Zhang, Wang (CR12) 2014; 24
Zeng, Wu, Tang (CR15) 2020; 70
Ramezanzadeh, Niroumandrad, Ahmadi (CR29) 2016; 103
Bai, Zhu, Lin (CR1) 2013; 7
Yang, Chen, Yang (CR11) 2014; 4
Khosravi, Veerapandiyan, Vallant (CR32) 2020; 46
Kim, Chun, Kim (CR9) 2015; 9
Pourhashem, Vaezi, Rashidi (CR27) 2017; 115
Ganjaee Sari, Shamshiri, Ramezanzadeh (CR24) 2017; 129
Cao, Jie, Wang (CR2) 2016; 6
Kong, Liu, Liu (CR22) 2020; 12
Zhao, Zhu, Fan (CR20) 2015; 9
Paquez, Amiard, de Combarieu (CR34) 2015; 27
Cui, Zheng, Liang (CR18) 2016; 7
Cao, Zhang, Huang (CR3) 2018; 30
Milošev, Kapun, Rodič (CR33) 2015; 74
Xia, Wu, Fu (CR14) 2020; 77
Liu, Liu, Feng (CR30) 2016; 6
Nikpour, Ramezanzadeh, Bahlakeh (CR26) 2017; 127
Zhao, Wang, Yang (CR6) 2016; 10
Xu, Liu, Liu (CR17) 2020; 20
Liu, Zheng, Wu (CR13) 2021; 79
Guo, Li, Chen (CR19) 2014; 24
Sun, Liu, Li (CR31) 2019; 554
Ramezanzadeh, Haeri, Ramezanzadeh (CR28) 2016; 303
Cui, Zheng, Liang (CR16) 2018; 11
Urper, Baydogan (CR35) 2020; 274
Wang, Wu, Liu (CR23) 2020; 12
Chen, Wang, Ma (CR5) 2016; 6
Guo, Jia, Liu (CR7) 2018; 12
Zhu, Tang, Gao (CR21) 2015; 14
S Cui (1943_CR18) 2016; 7
P Bai (1943_CR1) 2013; 7
Y Yang (1943_CR12) 2014; 24
H R Zhu (1943_CR21) 2015; 14
S Cui (1943_CR16) 2018; 11
C Xu (1943_CR17) 2020; 20
X Cao (1943_CR3) 2018; 30
H Guo (1943_CR7) 2018; 12
K N Kim (1943_CR9) 2015; 9
B Ramezanzadeh (1943_CR28) 2016; 303
X J Zhao (1943_CR20) 2015; 9
B Ramezanzadeh (1943_CR29) 2016; 103
W Sun (1943_CR31) 2019; 554
K Zhao (1943_CR6) 2016; 10
K Xia (1943_CR14) 2020; 77
M Ganjaee Sari (1943_CR24) 2017; 129
B Wang (1943_CR23) 2020; 12
H Guo (1943_CR8) 2017; 11
Y Liu (1943_CR13) 2021; 79
B Nikpour (1943_CR26) 2017; 127
X Cao (1943_CR2) 2016; 6
Q Zeng (1943_CR15) 2020; 70
Y Liu (1943_CR4) 2019; 61
S Pourhashem (1943_CR27) 2017; 115
A Moschona (1943_CR25) 2018; 145
F Xing (1943_CR10) 2017; 42
J Yang (1943_CR11) 2014; 4
X Kong (1943_CR22) 2020; 12
H S Khosravi (1943_CR32) 2020; 46
Y P Liu (1943_CR30) 2016; 6
O Urper (1943_CR35) 2020; 274
W Guo (1943_CR19) 2014; 24
S Chen (1943_CR5) 2016; 6
X Paquez (1943_CR34) 2015; 27
I Milošev (1943_CR33) 2015; 74
References_xml – volume: 115
  start-page: 78
  year: 2017
  end-page: 92
  ident: CR27
  article-title: Exploring corrosion protection properties of solvent based epoxy-graphene oxide nanocomposite coatings on mild steel
  publication-title: Corrosion Sci
  doi: 10.1016/j.corsci.2016.11.008
– volume: 554
  start-page: 488
  year: 2019
  end-page: 499
  ident: CR31
  article-title: Anti-corrosion of amphoteric metal enhanced by MAO/corrosion inhibitor composite in acid, alkaline and salt solutions
  publication-title: J Colloid Interface Sci
  doi: 10.1016/j.jcis.2019.07.035
– volume: 127
  start-page: 240
  year: 2017
  end-page: 259
  ident: CR26
  article-title: Synthesis of graphene oxide nanosheets functionalized by green corrosion inhibitive compounds to fabricate a protective system
  publication-title: Corrosion Sci
  doi: 10.1016/j.corsci.2017.08.029
– volume: 46
  start-page: 17741
  year: 2020
  end-page: 17751
  ident: CR32
  article-title: Effect of processing conditions on the structural properties and corrosion behavior of TiO -SiO multilayer coatings derived via the sol-gel method
  publication-title: Ceram Int
  doi: 10.1016/j.ceramint.2020.04.079
– volume: 6
  start-page: 21362
  year: 2016
  end-page: 21366
  ident: CR30
  article-title: A nanotubular coating with both high transparency and healable superhydrophobic self-cleaning properties
  publication-title: RSC Adv
  doi: 10.1039/C5RA26977F
– volume: 11
  start-page: 856
  year: 2017
  end-page: 864
  ident: CR8
  article-title: Self-sterilized flexible single-electrode triboelectric nanogenerator for energy harvesting and dynamic force sensing
  publication-title: ACS Nano
  doi: 10.1021/acsnano.6b07389
– volume: 6
  start-page: 1600665
  year: 2016
  ident: CR2
  article-title: Triboelectric nanogenerators driven self-powered electrochemical processes for energy and environmental science
  publication-title: Adv Energy Mater
  doi: 10.1002/aenm.201600665
– volume: 42
  start-page: 138
  year: 2017
  end-page: 142
  ident: CR10
  article-title: Natural triboelectric nanogenerator based on soles for harvesting low-frequency walking energy
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2017.10.029
– volume: 12
  start-page: 31351
  year: 2020
  end-page: 31359
  ident: CR23
  article-title: New hydrophobic organic coating based triboelectric nanogenerator for efficient and stable hydropower harvesting
  publication-title: ACS Appl Mater Interfaces
  doi: 10.1021/acsami.0c03843
– volume: 103
  start-page: 283
  year: 2016
  end-page: 304
  ident: CR29
  article-title: Enhancement of barrier and corrosion protection performance of an epoxy coating through wet transfer of amino functionalized graphene oxide
  publication-title: Corrosion Sci
  doi: 10.1016/j.corsci.2015.11.033
– volume: 61
  start-page: 454
  year: 2019
  end-page: 461
  ident: CR4
  article-title: Water-solid triboelectrification with self-repairable surfaces for water-flow energy harvesting
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2019.05.007
– volume: 4
  start-page: 1301322
  year: 2014
  ident: CR11
  article-title: Broadband vibrational energy harvesting based on a triboelectric nanogenerator
  publication-title: Adv Energy Mater
  doi: 10.1002/aenm.201301322
– volume: 30
  start-page: 1704077
  year: 2018
  ident: CR3
  article-title: Inductor-free wireless energy delivery via maxwell’s displacement current from an electrodeless triboelectric nanogenerator
  publication-title: Adv Mater
  doi: 10.1002/adma.201704077
– volume: 10
  start-page: 9044
  year: 2016
  end-page: 9052
  ident: CR6
  article-title: Self-powered wireless smart sensor node enabled by an ultrastable, highly efficient, and superhydrophobic-surface-based triboelectric nanogenerator
  publication-title: ACS Nano
  doi: 10.1021/acsnano.6b05815
– volume: 14
  start-page: 193
  year: 2015
  end-page: 200
  ident: CR21
  article-title: Self-powered metal surface anticorrosion protection using energy harvested from rain drops and wind
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2014.11.041
– volume: 79
  start-page: 105422
  year: 2021
  ident: CR13
  article-title: Conductive elastic sponge-based triboelectric nanogenerator (TENG) for effective random mechanical energy harvesting and ammonia sensing
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2020.105422
– volume: 274
  start-page: 128000
  year: 2020
  ident: CR35
  article-title: Effect of Al concentration on optical parameters of ZnO thin film derived by sol-gel dip coating technique
  publication-title: Mater Lett
  doi: 10.1016/j.matlet.2020.128000
– volume: 9
  start-page: 6394
  year: 2015
  end-page: 6400
  ident: CR9
  article-title: Highly stretchable 2D fabrics for wearable triboelectric nanogenerator under harsh environments
  publication-title: ACS Nano
  doi: 10.1021/acsnano.5b02010
– volume: 11
  start-page: 1873
  year: 2018
  end-page: 1882
  ident: CR16
  article-title: Triboelectrification based on double-layered polyaniline nanofibers for self-powered cathodic protection driven by wind
  publication-title: Nano Res
  doi: 10.1007/s12274-017-1805-y
– volume: 7
  start-page: 6477
  year: 2016
  end-page: 6483
  ident: CR18
  article-title: Conducting polymer PPy nanowire-based triboelectric nanogenerator and its application for self-powered electrochemical cathodic protection
  publication-title: Chem Sci
  doi: 10.1039/C6SC02562E
– volume: 145
  start-page: 135
  year: 2018
  end-page: 150
  ident: CR25
  article-title: Corrosion protection of carbon steel by tetraphosphonates of systematically different molecular size
  publication-title: Corrosion Sci
  doi: 10.1016/j.corsci.2018.09.021
– volume: 70
  start-page: 104524
  year: 2020
  ident: CR15
  article-title: A high-efficient breeze energy harvester utilizing a full-packaged triboelectric nanogenerator based on flow-induced vibration
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2020.104524
– volume: 24
  start-page: 3745
  year: 2014
  end-page: 3750
  ident: CR12
  article-title: Direct-current triboelectric generator
  publication-title: Adv Funct Mater
  doi: 10.1002/adfm.201304295
– volume: 74
  start-page: 447
  year: 2015
  end-page: 459
  ident: CR33
  article-title: Hybrid sol-gel coating agents based on zirconium(IV) propoxide and epoxysilane
  publication-title: J Sol-Gel Sci Technol
  doi: 10.1007/s10971-015-3620-9
– volume: 129
  start-page: 38
  year: 2017
  end-page: 53
  ident: CR24
  article-title: Fabricating an epoxy composite coating with enhanced corrosion resistance through impregnation of functionalized graphene oxide-co-montmorillonite nanoplatelet
  publication-title: Corrosion Sci
  doi: 10.1016/j.corsci.2017.09.024
– volume: 303
  start-page: 511
  year: 2016
  end-page: 528
  ident: CR28
  article-title: A facile route of making silica nanoparticles-covered graphene oxide nanohybrids (SiO -GO); fabrication of SiO -GO/epoxy composite coating with superior barrier and corrosion protection performance
  publication-title: Chem Eng J
  doi: 10.1016/j.cej.2016.06.028
– volume: 27
  start-page: 2711
  year: 2015
  end-page: 2717
  ident: CR34
  article-title: Resistant RuO /SiO absorbing sol-gel coatings for solar energy conversion at high temperature
  publication-title: Chem Mater
  doi: 10.1021/acs.chemmater.5b00731
– volume: 6
  start-page: 1501778
  year: 2016
  ident: CR5
  article-title: Triboelectric nanogenerator for sustainable wastewater treatment via a self-powered electrochemical process
  publication-title: Adv Energy Mater
  doi: 10.1002/aenm.201501778
– volume: 7
  start-page: 3713
  year: 2013
  end-page: 3719
  ident: CR1
  article-title: Integrated multilayered triboelectric nanogenerator for harvesting biomechanical energy from human motions
  publication-title: ACS Nano
  doi: 10.1021/nn4007708
– volume: 77
  start-page: 105112
  year: 2020
  ident: CR14
  article-title: A pulse controllable voltage source based on triboelectric nanogenerator
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2020.105112
– volume: 9
  start-page: 7671
  year: 2015
  end-page: 7677
  ident: CR20
  article-title: Triboelectric charging at the nanostructured solid/liquid interface for area-scalable wave energy conversion and its use in corrosion protection
  publication-title: ACS Nano
  doi: 10.1021/acsnano.5b03093
– volume: 12
  start-page: 3461
  year: 2018
  end-page: 3467
  ident: CR7
  article-title: Freestanding triboelectric nanogenerator enables noncontact motion-tracking and positioning
  publication-title: ACS Nano
  doi: 10.1021/acsnano.8b00140
– volume: 12
  start-page: 9387
  year: 2020
  end-page: 9394
  ident: CR22
  article-title: New coating TENG with antiwear and healing functions for energy harvesting
  publication-title: ACS Appl Mater Interfaces
  doi: 10.1021/acsami.9b22649
– volume: 20
  start-page: 100645
  year: 2020
  ident: CR17
  article-title: New inorganic coating-based triboelectric nanogenerators with anti-wear and self-healing properties for efficient wave energy harvesting
  publication-title: Appl Mater Today
  doi: 10.1016/j.apmt.2020.100645
– volume: 24
  start-page: 6691
  year: 2014
  end-page: 6699
  ident: CR19
  article-title: Electrochemical cathodic protection powered by triboelectric nanogenerator
  publication-title: Adv Funct Mater
  doi: 10.1002/adfm.201401168
– volume: 61
  start-page: 454
  year: 2019
  ident: 1943_CR4
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2019.05.007
– volume: 70
  start-page: 104524
  year: 2020
  ident: 1943_CR15
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2020.104524
– volume: 554
  start-page: 488
  year: 2019
  ident: 1943_CR31
  publication-title: J Colloid Interface Sci
  doi: 10.1016/j.jcis.2019.07.035
– volume: 10
  start-page: 9044
  year: 2016
  ident: 1943_CR6
  publication-title: ACS Nano
  doi: 10.1021/acsnano.6b05815
– volume: 12
  start-page: 31351
  year: 2020
  ident: 1943_CR23
  publication-title: ACS Appl Mater Interfaces
  doi: 10.1021/acsami.0c03843
– volume: 24
  start-page: 3745
  year: 2014
  ident: 1943_CR12
  publication-title: Adv Funct Mater
  doi: 10.1002/adfm.201304295
– volume: 6
  start-page: 1501778
  year: 2016
  ident: 1943_CR5
  publication-title: Adv Energy Mater
  doi: 10.1002/aenm.201501778
– volume: 42
  start-page: 138
  year: 2017
  ident: 1943_CR10
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2017.10.029
– volume: 4
  start-page: 1301322
  year: 2014
  ident: 1943_CR11
  publication-title: Adv Energy Mater
  doi: 10.1002/aenm.201301322
– volume: 27
  start-page: 2711
  year: 2015
  ident: 1943_CR34
  publication-title: Chem Mater
  doi: 10.1021/acs.chemmater.5b00731
– volume: 115
  start-page: 78
  year: 2017
  ident: 1943_CR27
  publication-title: Corrosion Sci
  doi: 10.1016/j.corsci.2016.11.008
– volume: 9
  start-page: 6394
  year: 2015
  ident: 1943_CR9
  publication-title: ACS Nano
  doi: 10.1021/acsnano.5b02010
– volume: 7
  start-page: 6477
  year: 2016
  ident: 1943_CR18
  publication-title: Chem Sci
  doi: 10.1039/C6SC02562E
– volume: 30
  start-page: 1704077
  year: 2018
  ident: 1943_CR3
  publication-title: Adv Mater
  doi: 10.1002/adma.201704077
– volume: 12
  start-page: 3461
  year: 2018
  ident: 1943_CR7
  publication-title: ACS Nano
  doi: 10.1021/acsnano.8b00140
– volume: 77
  start-page: 105112
  year: 2020
  ident: 1943_CR14
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2020.105112
– volume: 20
  start-page: 100645
  year: 2020
  ident: 1943_CR17
  publication-title: Appl Mater Today
  doi: 10.1016/j.apmt.2020.100645
– volume: 6
  start-page: 21362
  year: 2016
  ident: 1943_CR30
  publication-title: RSC Adv
  doi: 10.1039/C5RA26977F
– volume: 14
  start-page: 193
  year: 2015
  ident: 1943_CR21
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2014.11.041
– volume: 303
  start-page: 511
  year: 2016
  ident: 1943_CR28
  publication-title: Chem Eng J
  doi: 10.1016/j.cej.2016.06.028
– volume: 274
  start-page: 128000
  year: 2020
  ident: 1943_CR35
  publication-title: Mater Lett
  doi: 10.1016/j.matlet.2020.128000
– volume: 46
  start-page: 17741
  year: 2020
  ident: 1943_CR32
  publication-title: Ceram Int
  doi: 10.1016/j.ceramint.2020.04.079
– volume: 103
  start-page: 283
  year: 2016
  ident: 1943_CR29
  publication-title: Corrosion Sci
  doi: 10.1016/j.corsci.2015.11.033
– volume: 6
  start-page: 1600665
  year: 2016
  ident: 1943_CR2
  publication-title: Adv Energy Mater
  doi: 10.1002/aenm.201600665
– volume: 24
  start-page: 6691
  year: 2014
  ident: 1943_CR19
  publication-title: Adv Funct Mater
  doi: 10.1002/adfm.201401168
– volume: 12
  start-page: 9387
  year: 2020
  ident: 1943_CR22
  publication-title: ACS Appl Mater Interfaces
  doi: 10.1021/acsami.9b22649
– volume: 79
  start-page: 105422
  year: 2021
  ident: 1943_CR13
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2020.105422
– volume: 9
  start-page: 7671
  year: 2015
  ident: 1943_CR20
  publication-title: ACS Nano
  doi: 10.1021/acsnano.5b03093
– volume: 7
  start-page: 3713
  year: 2013
  ident: 1943_CR1
  publication-title: ACS Nano
  doi: 10.1021/nn4007708
– volume: 11
  start-page: 1873
  year: 2018
  ident: 1943_CR16
  publication-title: Nano Res
  doi: 10.1007/s12274-017-1805-y
– volume: 129
  start-page: 38
  year: 2017
  ident: 1943_CR24
  publication-title: Corrosion Sci
  doi: 10.1016/j.corsci.2017.09.024
– volume: 74
  start-page: 447
  year: 2015
  ident: 1943_CR33
  publication-title: J Sol-Gel Sci Technol
  doi: 10.1007/s10971-015-3620-9
– volume: 145
  start-page: 135
  year: 2018
  ident: 1943_CR25
  publication-title: Corrosion Sci
  doi: 10.1016/j.corsci.2018.09.021
– volume: 11
  start-page: 856
  year: 2017
  ident: 1943_CR8
  publication-title: ACS Nano
  doi: 10.1021/acsnano.6b07389
– volume: 127
  start-page: 240
  year: 2017
  ident: 1943_CR26
  publication-title: Corrosion Sci
  doi: 10.1016/j.corsci.2017.08.029
SSID ssj0000389014
Score 2.3345814
Snippet An organic/inorganic hybrid coating with self-healable hydrophobicity is prepared as triboelectrical layer by micro-arc oxidation (MAO) and fluorinated sol-gel...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 726
SubjectTerms Cathodic coating (process)
Cathodic protection
Corrosion
Corrosion prevention
Corrosion resistance
Corrosive wear
Energy harvesting
Engineering
Fluorination
Fluorine
Hydrophobicity
Organic coatings
Oxidation
Protective coatings
Self healing materials
Sol-gel processes
Wear resistance
Title Hydrophobic MAO/FSG coating based TENG for self-healable energy harvesting and self-powered cathodic protection
URI https://link.springer.com/article/10.1007/s11431-021-1943-8
https://www.proquest.com/docview/2638058043
Volume 65
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELagXWBAPEWhVB6YQBaO7TTpGKE-BGoZaKUyRX5FRaqSqi0D_55zmjSAAIk1OXu4s33f2XffIXTtLtYYxLKEGZ8SwaUmnUAJoqUFMJtIm3BXnDwctQcT8TD1p0Ud96rMdi-fJPOTuip2A9cOoS_zCATenIS7qO5D6O7yuCYs2l6sOMY4mnN6uwR7EnDmla-ZP83y1R9VIPPbu2jubnqH6KDAiTjaGPYI7dj0GO1_Yg88Qdng3SyzxSxTrxoPo6e73nMf60y6RGbsvJPB4-6ojwGW4pWdJ8SBQlcphW1e8IdncpmTbIC4TM1GZuG6psFIR-eaGZi4IHIA852iSa87vh-Qon8C0dxrr4lQXEjtU206nlISgAPsXp638A7bgRZJaBxZC9My4SJQYVv7WlijqRJeQhXlZ6iWZqk9R9gY-EiptUnHCsl0aLmvPWsBfHErA9ZAtNRirAtycdfjYh5XtMhO8TEoPnaKj8MGutkOWWyYNf4SbpamiYtNtooZnB3UD6ngDXRbmqv6_etkF_-SvkR7zJU85HlnTVRbL9_sFQCRtWqhetR_eey28gX4AYxm1Rk
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT-MwEB6xcGD3gJaXtgu7-AAXkIVjO0164FCxlPJoOdBK3IJfESuhpmqLEL-HP8rYTSiLFiQOXJOxFY3Hnm_imW8Atv2PNY6xLOU2ZlQKZWgj0ZIa5RDM5srlwhcnd7r1dl-eXsVXc_BY1cKEbPfqSjKc1LNiN3TtGPryiGLgLWhaZlKeuYd7jNPGByd_cFF3OG8d9Q7btGwlQI2I6hMqtZDKxMzYRqS1Qh-KhixCN-u0nhiZp9bzlnCjciETndZNbKSzhmkZ5UwzgfN-gQXEHqnfOn3efP6R4xnqWOAQ9wn9NBE8qm5P__fV__q_Gah9dQ8b3FvrOyyVuJQ0p4a0DHNusALfXrAVrkLRfrCjYnhT6L-GdJoX-63LY2IK5ROnifeGlvSOuscEYTAZu9ucehDqK7OICwWG5EaNAqkHiquBncoMfZc2HOnpYwuLE5fEEWgua9D_FCWvw_ygGLgfQKzFh4w5lzecVNykTsQmcg7BnnAq4TVglRYzU5KZ-54at9mMhtkrPkPFZ17xWVqD3echwymTx3vCm9XSZOWmHmcczyoWp0yKGuxVyzV7_eZkPz8kvQWL7V7nPDs_6Z5twFfuyy1CztsmzE9Gd-4XgqCJ_h2MkMD1Z1v9E4n5D80
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9tAEB5RKqH2gFpo1RTa7gEuVKusd9exc-ghKoTwCkgQiZu7L4tKyI6SIMSv4i8y49ikVG2lHrjasytrdtYzszvfNwBbdLAmMZfl0seCa2Uc7yZWc2cCBrO5CbkicPLJsDMY6cPL-HIJ7hssTFXt3lxJzjENxNJUzNpjn7cXwDd085gGy4hjEq54WldVHoW7W8zZpt8OdnGBt6Xs7118H_C6rQB3KurMuLZKGxcL57uRtQb9KRq1qjpbp53E6Tz1xGEincmVTmzacbHTwTthdZQLKxTO-wJeagIf4wYayd7joQ6x1YmKT5yK-3miZNTcpP7pq5_6wkWA-9udbOXq-m9gtY5RWW9uVG9hKRRr8PoX5sJ1KAd3flKOr0r707GT3mm7f77PXGmoiJqRZ_TsYm-4zzAkZtNwnXMKSAmlxUIFNmRXZlIRfKC4KfxcZkwd23AkUcmWHieuSSTQdN7B6FmU_B6Wi7IIH4B5jw-FCCHvBm2kS4OKXRQCBn4qmES2QDRazFxNbE79Na6zBSUzKT5DxWek-Cxtwc7jkPGc1eNfwpvN0mT1Bp9mEv9bIk6FVi342izX4vVfJ_v4X9JfYOVst58dHwyPNuCVJORFVf62CcuzyU34hPHQzH6ubJDBj-c2-geU6hQA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Hydrophobic+MAO%2FFSG+coating+based+TENG+for+self-healable+energy+harvesting+and+self-powered+cathodic+protection&rft.jtitle=Science+China.+Technological+sciences&rft.au=Liu%2C+YuPeng&rft.au=Sun%2C+WeiXiang&rft.au=Li%2C+TingHua&rft.au=Wang%2C+DaoAi&rft.date=2022-03-01&rft.issn=1674-7321&rft.eissn=1869-1900&rft.volume=65&rft.issue=3&rft.spage=726&rft.epage=734&rft_id=info:doi/10.1007%2Fs11431-021-1943-8&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s11431_021_1943_8
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1674-7321&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1674-7321&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1674-7321&client=summon