Hydrophobic MAO/FSG coating based TENG for self-healable energy harvesting and self-powered cathodic protection
An organic/inorganic hybrid coating with self-healable hydrophobicity is prepared as triboelectrical layer by micro-arc oxidation (MAO) and fluorinated sol-gel (FSG) coating. The MAO/FSG hybrid coating-based TENG (MF-TENG) has a current output of 31 µA and voltage output of 870 V, which is eight tim...
Saved in:
Published in | Science China. Technological sciences Vol. 65; no. 3; pp. 726 - 734 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Beijing
Science China Press
01.03.2022
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | An organic/inorganic hybrid coating with self-healable hydrophobicity is prepared as triboelectrical layer by micro-arc oxidation (MAO) and fluorinated sol-gel (FSG) coating. The MAO/FSG hybrid coating-based TENG (MF-TENG) has a current output of 31 µA and voltage output of 870 V, which is eight times that of the MAO based TENG. Compared with organic coating, the organic/inorganic hybrid coating has good wear resistance. When the fluorine composition on the surface of the coating is damaged, the self-healing hydrophobicity and electrical output are achieved by transferring loaded perfluorosilane to the damaged surface. The fluorinated sol-gel coating is hydrophobic, which ensures that the coating has good corrosion resistance. Also, the electricity generated in triboelectrification could improve the anti-corrosion performance by cathodic protection. Based on the anti-corrosion, anti-wear and self-healing properties, the MF-TENG has potential applicability in the field of energy collection, energy supply, and corrosion protection. |
---|---|
AbstractList | An organic/inorganic hybrid coating with self-healable hydrophobicity is prepared as triboelectrical layer by micro-arc oxidation (MAO) and fluorinated sol-gel (FSG) coating. The MAO/FSG hybrid coating-based TENG (MF-TENG) has a current output of 31 µA and voltage output of 870 V, which is eight times that of the MAO based TENG. Compared with organic coating, the organic/inorganic hybrid coating has good wear resistance. When the fluorine composition on the surface of the coating is damaged, the self-healing hydrophobicity and electrical output are achieved by transferring loaded perfluorosilane to the damaged surface. The fluorinated sol-gel coating is hydrophobic, which ensures that the coating has good corrosion resistance. Also, the electricity generated in triboelectrification could improve the anti-corrosion performance by cathodic protection. Based on the anti-corrosion, anti-wear and self-healing properties, the MF-TENG has potential applicability in the field of energy collection, energy supply, and corrosion protection. |
Author | Sun, WeiXiang Liu, YuPeng Wang, DaoAi Li, TingHua |
Author_xml | – sequence: 1 givenname: YuPeng surname: Liu fullname: Liu, YuPeng organization: State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Qingdao Center of Resource Chemistry and New Materials – sequence: 2 givenname: WeiXiang surname: Sun fullname: Sun, WeiXiang organization: Qingdao Center of Resource Chemistry and New Materials, Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences – sequence: 3 givenname: TingHua surname: Li fullname: Li, TingHua organization: Technical Center of China Tobacco Yunnan Industrial Co., Ltd – sequence: 4 givenname: DaoAi surname: Wang fullname: Wang, DaoAi email: wangda@licp.cas.cn organization: State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Qingdao Center of Resource Chemistry and New Materials |
BookMark | eNp9kF1LwzAUhoNMcM79AO8CXsflq216OcY-hOkunNchSdO1ozYz6ZT9ezMrCILm5uTA-5z3nPcaDFrXWgBuCb4nGGeTQAhnBGFKEMk5Q-ICDIlI89hhPIj_NOMoY5RcgXEIexwfEzkmfAjc6lR4d6icrg18nG4mi-clNE51dbuDWgVbwO38aQlL52GwTYkqqxqlGwtta_3uBCvl3234kqu26DUH92F9JI3qKlfEwQfvOmu62rU34LJUTbDj7zoCL4v5drZC683yYTZdI8NI2iGuGVcmwabIidYqSTijlGFBKRVpZngpiiTnghpVMp5pkZrEcFsYrDkpscZsBO76udH67RgXlHt39G20lDRlAicCcxZVpFcZ70LwtpQHX78qf5IEy3O0so9WxmjlOVopIpP9YkzdqfNtnVd18y9JezJEl3Zn_c9Of0Of2qWOtw |
CitedBy_id | crossref_primary_10_1002_adfm_202208372 crossref_primary_10_1039_D2NJ04639C crossref_primary_10_1002_aesr_202200186 crossref_primary_10_1007_s11431_024_2744_5 crossref_primary_10_1002_adfm_202300764 crossref_primary_10_1088_1361_6463_acdd0c crossref_primary_10_1007_s12274_023_5623_0 crossref_primary_10_1002_adem_202201442 crossref_primary_10_3390_mi13101586 crossref_primary_10_3390_s24020511 |
Cites_doi | 10.1016/j.corsci.2016.11.008 10.1016/j.jcis.2019.07.035 10.1016/j.corsci.2017.08.029 10.1016/j.ceramint.2020.04.079 10.1039/C5RA26977F 10.1021/acsnano.6b07389 10.1002/aenm.201600665 10.1016/j.nanoen.2017.10.029 10.1021/acsami.0c03843 10.1016/j.corsci.2015.11.033 10.1016/j.nanoen.2019.05.007 10.1002/aenm.201301322 10.1002/adma.201704077 10.1021/acsnano.6b05815 10.1016/j.nanoen.2014.11.041 10.1016/j.nanoen.2020.105422 10.1016/j.matlet.2020.128000 10.1021/acsnano.5b02010 10.1007/s12274-017-1805-y 10.1039/C6SC02562E 10.1016/j.corsci.2018.09.021 10.1016/j.nanoen.2020.104524 10.1002/adfm.201304295 10.1007/s10971-015-3620-9 10.1016/j.corsci.2017.09.024 10.1016/j.cej.2016.06.028 10.1021/acs.chemmater.5b00731 10.1002/aenm.201501778 10.1021/nn4007708 10.1016/j.nanoen.2020.105112 10.1021/acsnano.5b03093 10.1021/acsnano.8b00140 10.1021/acsami.9b22649 10.1016/j.apmt.2020.100645 10.1002/adfm.201401168 |
ContentType | Journal Article |
Copyright | Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021 Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021. |
Copyright_xml | – notice: Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021 – notice: Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021. |
DBID | AAYXX CITATION |
DOI | 10.1007/s11431-021-1943-8 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1869-1900 |
EndPage | 734 |
ExternalDocumentID | 10_1007_s11431_021_1943_8 |
GroupedDBID | -5B -5G -BR -EM -SC -S~ -Y2 -~C .VR 06D 0R~ 0VY 1N0 29~ 2B. 2C. 2J2 2JN 2JY 2KG 2KM 2LR 2VQ 2~H 30V 4.4 406 40D 40E 5VR 5VS 8TC 8UJ 92E 92I 92Q 93N 95- 95. 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAXDM AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABDZT ABECU ABFTD ABFTV ABHQN ABJNI ABJOX ABKCH ABKTR ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACZOJ ADHIR ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADYOE ADZKW AEBTG AEFQL AEGAL AEGNC AEJHL AEJRE AEMSY AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFLOW AFQWF AFUIB AFWTZ AFYQB AFZKB AGAYW AGDGC AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMTXH AMXSW AMYLF AOCGG ARMRJ ASPBG AVWKF AXYYD AZFZN B-. BDATZ BSONS CAG CAJEC CCEZO CEKLB CHBEP CJPJV COF CSCUP CW9 DDRTE DNIVK DPUIP EBLON EBS EIOEI EJD ESBYG FA0 FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 H13 HG6 HMJXF HRMNR HVGLF HZ~ IJ- IKXTQ IWAJR IXD I~Z J-C JBSCW JZLTJ KOV LLZTM MA- N2Q NB0 NPVJJ NQJWS O9J P9P PF0 PT4 Q-- QOS R89 RIG ROL RSV S16 S3B SAP SCL SEG SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN TCJ TGP TR2 TSG TUC U1G U2A U5M UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z5O Z7R Z7S Z7V Z7X Z7Y Z7Z Z85 Z88 ZMTXR ~A9 AAPKM AAYXX ABBRH ABDBE ACMFV ADHKG AFDZB AFOHR AGQPQ AHPBZ ATHPR AYFIA CITATION ABRTQ |
ID | FETCH-LOGICAL-c316t-4b34ac50cd91bba554322308222867c4f8d59482caf347b86c5c4edc0b41f0b03 |
IEDL.DBID | U2A |
ISSN | 1674-7321 |
IngestDate | Fri Jul 25 11:08:50 EDT 2025 Tue Jul 01 03:26:19 EDT 2025 Thu Apr 24 22:56:45 EDT 2025 Fri Feb 21 02:47:25 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | triboelectric nanogenerator organic/inorganic hybrid coating corrosion resistance self-healing property energy collection |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c316t-4b34ac50cd91bba554322308222867c4f8d59482caf347b86c5c4edc0b41f0b03 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 2638058043 |
PQPubID | 2043625 |
PageCount | 9 |
ParticipantIDs | proquest_journals_2638058043 crossref_primary_10_1007_s11431_021_1943_8 crossref_citationtrail_10_1007_s11431_021_1943_8 springer_journals_10_1007_s11431_021_1943_8 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-03-01 |
PublicationDateYYYYMMDD | 2022-03-01 |
PublicationDate_xml | – month: 03 year: 2022 text: 2022-03-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Beijing |
PublicationPlace_xml | – name: Beijing – name: Heidelberg |
PublicationTitle | Science China. Technological sciences |
PublicationTitleAbbrev | Sci. China Technol. Sci |
PublicationYear | 2022 |
Publisher | Science China Press Springer Nature B.V |
Publisher_xml | – name: Science China Press – name: Springer Nature B.V |
References | Liu, Zheng, Li (CR4) 2019; 61 Xing, Jie, Cao (CR10) 2017; 42 Guo, Li, Cao (CR8) 2017; 11 Moschona, Plesu, Mezei (CR25) 2018; 145 Yang, Zhang, Wang (CR12) 2014; 24 Zeng, Wu, Tang (CR15) 2020; 70 Ramezanzadeh, Niroumandrad, Ahmadi (CR29) 2016; 103 Bai, Zhu, Lin (CR1) 2013; 7 Yang, Chen, Yang (CR11) 2014; 4 Khosravi, Veerapandiyan, Vallant (CR32) 2020; 46 Kim, Chun, Kim (CR9) 2015; 9 Pourhashem, Vaezi, Rashidi (CR27) 2017; 115 Ganjaee Sari, Shamshiri, Ramezanzadeh (CR24) 2017; 129 Cao, Jie, Wang (CR2) 2016; 6 Kong, Liu, Liu (CR22) 2020; 12 Zhao, Zhu, Fan (CR20) 2015; 9 Paquez, Amiard, de Combarieu (CR34) 2015; 27 Cui, Zheng, Liang (CR18) 2016; 7 Cao, Zhang, Huang (CR3) 2018; 30 Milošev, Kapun, Rodič (CR33) 2015; 74 Xia, Wu, Fu (CR14) 2020; 77 Liu, Liu, Feng (CR30) 2016; 6 Nikpour, Ramezanzadeh, Bahlakeh (CR26) 2017; 127 Zhao, Wang, Yang (CR6) 2016; 10 Xu, Liu, Liu (CR17) 2020; 20 Liu, Zheng, Wu (CR13) 2021; 79 Guo, Li, Chen (CR19) 2014; 24 Sun, Liu, Li (CR31) 2019; 554 Ramezanzadeh, Haeri, Ramezanzadeh (CR28) 2016; 303 Cui, Zheng, Liang (CR16) 2018; 11 Urper, Baydogan (CR35) 2020; 274 Wang, Wu, Liu (CR23) 2020; 12 Chen, Wang, Ma (CR5) 2016; 6 Guo, Jia, Liu (CR7) 2018; 12 Zhu, Tang, Gao (CR21) 2015; 14 S Cui (1943_CR18) 2016; 7 P Bai (1943_CR1) 2013; 7 Y Yang (1943_CR12) 2014; 24 H R Zhu (1943_CR21) 2015; 14 S Cui (1943_CR16) 2018; 11 C Xu (1943_CR17) 2020; 20 X Cao (1943_CR3) 2018; 30 H Guo (1943_CR7) 2018; 12 K N Kim (1943_CR9) 2015; 9 B Ramezanzadeh (1943_CR28) 2016; 303 X J Zhao (1943_CR20) 2015; 9 B Ramezanzadeh (1943_CR29) 2016; 103 W Sun (1943_CR31) 2019; 554 K Zhao (1943_CR6) 2016; 10 K Xia (1943_CR14) 2020; 77 M Ganjaee Sari (1943_CR24) 2017; 129 B Wang (1943_CR23) 2020; 12 H Guo (1943_CR8) 2017; 11 Y Liu (1943_CR13) 2021; 79 B Nikpour (1943_CR26) 2017; 127 X Cao (1943_CR2) 2016; 6 Q Zeng (1943_CR15) 2020; 70 Y Liu (1943_CR4) 2019; 61 S Pourhashem (1943_CR27) 2017; 115 A Moschona (1943_CR25) 2018; 145 F Xing (1943_CR10) 2017; 42 J Yang (1943_CR11) 2014; 4 X Kong (1943_CR22) 2020; 12 H S Khosravi (1943_CR32) 2020; 46 Y P Liu (1943_CR30) 2016; 6 O Urper (1943_CR35) 2020; 274 W Guo (1943_CR19) 2014; 24 S Chen (1943_CR5) 2016; 6 X Paquez (1943_CR34) 2015; 27 I Milošev (1943_CR33) 2015; 74 |
References_xml | – volume: 115 start-page: 78 year: 2017 end-page: 92 ident: CR27 article-title: Exploring corrosion protection properties of solvent based epoxy-graphene oxide nanocomposite coatings on mild steel publication-title: Corrosion Sci doi: 10.1016/j.corsci.2016.11.008 – volume: 554 start-page: 488 year: 2019 end-page: 499 ident: CR31 article-title: Anti-corrosion of amphoteric metal enhanced by MAO/corrosion inhibitor composite in acid, alkaline and salt solutions publication-title: J Colloid Interface Sci doi: 10.1016/j.jcis.2019.07.035 – volume: 127 start-page: 240 year: 2017 end-page: 259 ident: CR26 article-title: Synthesis of graphene oxide nanosheets functionalized by green corrosion inhibitive compounds to fabricate a protective system publication-title: Corrosion Sci doi: 10.1016/j.corsci.2017.08.029 – volume: 46 start-page: 17741 year: 2020 end-page: 17751 ident: CR32 article-title: Effect of processing conditions on the structural properties and corrosion behavior of TiO -SiO multilayer coatings derived via the sol-gel method publication-title: Ceram Int doi: 10.1016/j.ceramint.2020.04.079 – volume: 6 start-page: 21362 year: 2016 end-page: 21366 ident: CR30 article-title: A nanotubular coating with both high transparency and healable superhydrophobic self-cleaning properties publication-title: RSC Adv doi: 10.1039/C5RA26977F – volume: 11 start-page: 856 year: 2017 end-page: 864 ident: CR8 article-title: Self-sterilized flexible single-electrode triboelectric nanogenerator for energy harvesting and dynamic force sensing publication-title: ACS Nano doi: 10.1021/acsnano.6b07389 – volume: 6 start-page: 1600665 year: 2016 ident: CR2 article-title: Triboelectric nanogenerators driven self-powered electrochemical processes for energy and environmental science publication-title: Adv Energy Mater doi: 10.1002/aenm.201600665 – volume: 42 start-page: 138 year: 2017 end-page: 142 ident: CR10 article-title: Natural triboelectric nanogenerator based on soles for harvesting low-frequency walking energy publication-title: Nano Energy doi: 10.1016/j.nanoen.2017.10.029 – volume: 12 start-page: 31351 year: 2020 end-page: 31359 ident: CR23 article-title: New hydrophobic organic coating based triboelectric nanogenerator for efficient and stable hydropower harvesting publication-title: ACS Appl Mater Interfaces doi: 10.1021/acsami.0c03843 – volume: 103 start-page: 283 year: 2016 end-page: 304 ident: CR29 article-title: Enhancement of barrier and corrosion protection performance of an epoxy coating through wet transfer of amino functionalized graphene oxide publication-title: Corrosion Sci doi: 10.1016/j.corsci.2015.11.033 – volume: 61 start-page: 454 year: 2019 end-page: 461 ident: CR4 article-title: Water-solid triboelectrification with self-repairable surfaces for water-flow energy harvesting publication-title: Nano Energy doi: 10.1016/j.nanoen.2019.05.007 – volume: 4 start-page: 1301322 year: 2014 ident: CR11 article-title: Broadband vibrational energy harvesting based on a triboelectric nanogenerator publication-title: Adv Energy Mater doi: 10.1002/aenm.201301322 – volume: 30 start-page: 1704077 year: 2018 ident: CR3 article-title: Inductor-free wireless energy delivery via maxwell’s displacement current from an electrodeless triboelectric nanogenerator publication-title: Adv Mater doi: 10.1002/adma.201704077 – volume: 10 start-page: 9044 year: 2016 end-page: 9052 ident: CR6 article-title: Self-powered wireless smart sensor node enabled by an ultrastable, highly efficient, and superhydrophobic-surface-based triboelectric nanogenerator publication-title: ACS Nano doi: 10.1021/acsnano.6b05815 – volume: 14 start-page: 193 year: 2015 end-page: 200 ident: CR21 article-title: Self-powered metal surface anticorrosion protection using energy harvested from rain drops and wind publication-title: Nano Energy doi: 10.1016/j.nanoen.2014.11.041 – volume: 79 start-page: 105422 year: 2021 ident: CR13 article-title: Conductive elastic sponge-based triboelectric nanogenerator (TENG) for effective random mechanical energy harvesting and ammonia sensing publication-title: Nano Energy doi: 10.1016/j.nanoen.2020.105422 – volume: 274 start-page: 128000 year: 2020 ident: CR35 article-title: Effect of Al concentration on optical parameters of ZnO thin film derived by sol-gel dip coating technique publication-title: Mater Lett doi: 10.1016/j.matlet.2020.128000 – volume: 9 start-page: 6394 year: 2015 end-page: 6400 ident: CR9 article-title: Highly stretchable 2D fabrics for wearable triboelectric nanogenerator under harsh environments publication-title: ACS Nano doi: 10.1021/acsnano.5b02010 – volume: 11 start-page: 1873 year: 2018 end-page: 1882 ident: CR16 article-title: Triboelectrification based on double-layered polyaniline nanofibers for self-powered cathodic protection driven by wind publication-title: Nano Res doi: 10.1007/s12274-017-1805-y – volume: 7 start-page: 6477 year: 2016 end-page: 6483 ident: CR18 article-title: Conducting polymer PPy nanowire-based triboelectric nanogenerator and its application for self-powered electrochemical cathodic protection publication-title: Chem Sci doi: 10.1039/C6SC02562E – volume: 145 start-page: 135 year: 2018 end-page: 150 ident: CR25 article-title: Corrosion protection of carbon steel by tetraphosphonates of systematically different molecular size publication-title: Corrosion Sci doi: 10.1016/j.corsci.2018.09.021 – volume: 70 start-page: 104524 year: 2020 ident: CR15 article-title: A high-efficient breeze energy harvester utilizing a full-packaged triboelectric nanogenerator based on flow-induced vibration publication-title: Nano Energy doi: 10.1016/j.nanoen.2020.104524 – volume: 24 start-page: 3745 year: 2014 end-page: 3750 ident: CR12 article-title: Direct-current triboelectric generator publication-title: Adv Funct Mater doi: 10.1002/adfm.201304295 – volume: 74 start-page: 447 year: 2015 end-page: 459 ident: CR33 article-title: Hybrid sol-gel coating agents based on zirconium(IV) propoxide and epoxysilane publication-title: J Sol-Gel Sci Technol doi: 10.1007/s10971-015-3620-9 – volume: 129 start-page: 38 year: 2017 end-page: 53 ident: CR24 article-title: Fabricating an epoxy composite coating with enhanced corrosion resistance through impregnation of functionalized graphene oxide-co-montmorillonite nanoplatelet publication-title: Corrosion Sci doi: 10.1016/j.corsci.2017.09.024 – volume: 303 start-page: 511 year: 2016 end-page: 528 ident: CR28 article-title: A facile route of making silica nanoparticles-covered graphene oxide nanohybrids (SiO -GO); fabrication of SiO -GO/epoxy composite coating with superior barrier and corrosion protection performance publication-title: Chem Eng J doi: 10.1016/j.cej.2016.06.028 – volume: 27 start-page: 2711 year: 2015 end-page: 2717 ident: CR34 article-title: Resistant RuO /SiO absorbing sol-gel coatings for solar energy conversion at high temperature publication-title: Chem Mater doi: 10.1021/acs.chemmater.5b00731 – volume: 6 start-page: 1501778 year: 2016 ident: CR5 article-title: Triboelectric nanogenerator for sustainable wastewater treatment via a self-powered electrochemical process publication-title: Adv Energy Mater doi: 10.1002/aenm.201501778 – volume: 7 start-page: 3713 year: 2013 end-page: 3719 ident: CR1 article-title: Integrated multilayered triboelectric nanogenerator for harvesting biomechanical energy from human motions publication-title: ACS Nano doi: 10.1021/nn4007708 – volume: 77 start-page: 105112 year: 2020 ident: CR14 article-title: A pulse controllable voltage source based on triboelectric nanogenerator publication-title: Nano Energy doi: 10.1016/j.nanoen.2020.105112 – volume: 9 start-page: 7671 year: 2015 end-page: 7677 ident: CR20 article-title: Triboelectric charging at the nanostructured solid/liquid interface for area-scalable wave energy conversion and its use in corrosion protection publication-title: ACS Nano doi: 10.1021/acsnano.5b03093 – volume: 12 start-page: 3461 year: 2018 end-page: 3467 ident: CR7 article-title: Freestanding triboelectric nanogenerator enables noncontact motion-tracking and positioning publication-title: ACS Nano doi: 10.1021/acsnano.8b00140 – volume: 12 start-page: 9387 year: 2020 end-page: 9394 ident: CR22 article-title: New coating TENG with antiwear and healing functions for energy harvesting publication-title: ACS Appl Mater Interfaces doi: 10.1021/acsami.9b22649 – volume: 20 start-page: 100645 year: 2020 ident: CR17 article-title: New inorganic coating-based triboelectric nanogenerators with anti-wear and self-healing properties for efficient wave energy harvesting publication-title: Appl Mater Today doi: 10.1016/j.apmt.2020.100645 – volume: 24 start-page: 6691 year: 2014 end-page: 6699 ident: CR19 article-title: Electrochemical cathodic protection powered by triboelectric nanogenerator publication-title: Adv Funct Mater doi: 10.1002/adfm.201401168 – volume: 61 start-page: 454 year: 2019 ident: 1943_CR4 publication-title: Nano Energy doi: 10.1016/j.nanoen.2019.05.007 – volume: 70 start-page: 104524 year: 2020 ident: 1943_CR15 publication-title: Nano Energy doi: 10.1016/j.nanoen.2020.104524 – volume: 554 start-page: 488 year: 2019 ident: 1943_CR31 publication-title: J Colloid Interface Sci doi: 10.1016/j.jcis.2019.07.035 – volume: 10 start-page: 9044 year: 2016 ident: 1943_CR6 publication-title: ACS Nano doi: 10.1021/acsnano.6b05815 – volume: 12 start-page: 31351 year: 2020 ident: 1943_CR23 publication-title: ACS Appl Mater Interfaces doi: 10.1021/acsami.0c03843 – volume: 24 start-page: 3745 year: 2014 ident: 1943_CR12 publication-title: Adv Funct Mater doi: 10.1002/adfm.201304295 – volume: 6 start-page: 1501778 year: 2016 ident: 1943_CR5 publication-title: Adv Energy Mater doi: 10.1002/aenm.201501778 – volume: 42 start-page: 138 year: 2017 ident: 1943_CR10 publication-title: Nano Energy doi: 10.1016/j.nanoen.2017.10.029 – volume: 4 start-page: 1301322 year: 2014 ident: 1943_CR11 publication-title: Adv Energy Mater doi: 10.1002/aenm.201301322 – volume: 27 start-page: 2711 year: 2015 ident: 1943_CR34 publication-title: Chem Mater doi: 10.1021/acs.chemmater.5b00731 – volume: 115 start-page: 78 year: 2017 ident: 1943_CR27 publication-title: Corrosion Sci doi: 10.1016/j.corsci.2016.11.008 – volume: 9 start-page: 6394 year: 2015 ident: 1943_CR9 publication-title: ACS Nano doi: 10.1021/acsnano.5b02010 – volume: 7 start-page: 6477 year: 2016 ident: 1943_CR18 publication-title: Chem Sci doi: 10.1039/C6SC02562E – volume: 30 start-page: 1704077 year: 2018 ident: 1943_CR3 publication-title: Adv Mater doi: 10.1002/adma.201704077 – volume: 12 start-page: 3461 year: 2018 ident: 1943_CR7 publication-title: ACS Nano doi: 10.1021/acsnano.8b00140 – volume: 77 start-page: 105112 year: 2020 ident: 1943_CR14 publication-title: Nano Energy doi: 10.1016/j.nanoen.2020.105112 – volume: 20 start-page: 100645 year: 2020 ident: 1943_CR17 publication-title: Appl Mater Today doi: 10.1016/j.apmt.2020.100645 – volume: 6 start-page: 21362 year: 2016 ident: 1943_CR30 publication-title: RSC Adv doi: 10.1039/C5RA26977F – volume: 14 start-page: 193 year: 2015 ident: 1943_CR21 publication-title: Nano Energy doi: 10.1016/j.nanoen.2014.11.041 – volume: 303 start-page: 511 year: 2016 ident: 1943_CR28 publication-title: Chem Eng J doi: 10.1016/j.cej.2016.06.028 – volume: 274 start-page: 128000 year: 2020 ident: 1943_CR35 publication-title: Mater Lett doi: 10.1016/j.matlet.2020.128000 – volume: 46 start-page: 17741 year: 2020 ident: 1943_CR32 publication-title: Ceram Int doi: 10.1016/j.ceramint.2020.04.079 – volume: 103 start-page: 283 year: 2016 ident: 1943_CR29 publication-title: Corrosion Sci doi: 10.1016/j.corsci.2015.11.033 – volume: 6 start-page: 1600665 year: 2016 ident: 1943_CR2 publication-title: Adv Energy Mater doi: 10.1002/aenm.201600665 – volume: 24 start-page: 6691 year: 2014 ident: 1943_CR19 publication-title: Adv Funct Mater doi: 10.1002/adfm.201401168 – volume: 12 start-page: 9387 year: 2020 ident: 1943_CR22 publication-title: ACS Appl Mater Interfaces doi: 10.1021/acsami.9b22649 – volume: 79 start-page: 105422 year: 2021 ident: 1943_CR13 publication-title: Nano Energy doi: 10.1016/j.nanoen.2020.105422 – volume: 9 start-page: 7671 year: 2015 ident: 1943_CR20 publication-title: ACS Nano doi: 10.1021/acsnano.5b03093 – volume: 7 start-page: 3713 year: 2013 ident: 1943_CR1 publication-title: ACS Nano doi: 10.1021/nn4007708 – volume: 11 start-page: 1873 year: 2018 ident: 1943_CR16 publication-title: Nano Res doi: 10.1007/s12274-017-1805-y – volume: 129 start-page: 38 year: 2017 ident: 1943_CR24 publication-title: Corrosion Sci doi: 10.1016/j.corsci.2017.09.024 – volume: 74 start-page: 447 year: 2015 ident: 1943_CR33 publication-title: J Sol-Gel Sci Technol doi: 10.1007/s10971-015-3620-9 – volume: 145 start-page: 135 year: 2018 ident: 1943_CR25 publication-title: Corrosion Sci doi: 10.1016/j.corsci.2018.09.021 – volume: 11 start-page: 856 year: 2017 ident: 1943_CR8 publication-title: ACS Nano doi: 10.1021/acsnano.6b07389 – volume: 127 start-page: 240 year: 2017 ident: 1943_CR26 publication-title: Corrosion Sci doi: 10.1016/j.corsci.2017.08.029 |
SSID | ssj0000389014 |
Score | 2.3345814 |
Snippet | An organic/inorganic hybrid coating with self-healable hydrophobicity is prepared as triboelectrical layer by micro-arc oxidation (MAO) and fluorinated sol-gel... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 726 |
SubjectTerms | Cathodic coating (process) Cathodic protection Corrosion Corrosion prevention Corrosion resistance Corrosive wear Energy harvesting Engineering Fluorination Fluorine Hydrophobicity Organic coatings Oxidation Protective coatings Self healing materials Sol-gel processes Wear resistance |
Title | Hydrophobic MAO/FSG coating based TENG for self-healable energy harvesting and self-powered cathodic protection |
URI | https://link.springer.com/article/10.1007/s11431-021-1943-8 https://www.proquest.com/docview/2638058043 |
Volume | 65 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELagXWBAPEWhVB6YQBaO7TTpGKE-BGoZaKUyRX5FRaqSqi0D_55zmjSAAIk1OXu4s33f2XffIXTtLtYYxLKEGZ8SwaUmnUAJoqUFMJtIm3BXnDwctQcT8TD1p0Ud96rMdi-fJPOTuip2A9cOoS_zCATenIS7qO5D6O7yuCYs2l6sOMY4mnN6uwR7EnDmla-ZP83y1R9VIPPbu2jubnqH6KDAiTjaGPYI7dj0GO1_Yg88Qdng3SyzxSxTrxoPo6e73nMf60y6RGbsvJPB4-6ojwGW4pWdJ8SBQlcphW1e8IdncpmTbIC4TM1GZuG6psFIR-eaGZi4IHIA852iSa87vh-Qon8C0dxrr4lQXEjtU206nlISgAPsXp638A7bgRZJaBxZC9My4SJQYVv7WlijqRJeQhXlZ6iWZqk9R9gY-EiptUnHCsl0aLmvPWsBfHErA9ZAtNRirAtycdfjYh5XtMhO8TEoPnaKj8MGutkOWWyYNf4SbpamiYtNtooZnB3UD6ngDXRbmqv6_etkF_-SvkR7zJU85HlnTVRbL9_sFQCRtWqhetR_eey28gX4AYxm1Rk |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT-MwEB6xcGD3gJaXtgu7-AAXkIVjO0164FCxlPJoOdBK3IJfESuhpmqLEL-HP8rYTSiLFiQOXJOxFY3Hnm_imW8Atv2PNY6xLOU2ZlQKZWgj0ZIa5RDM5srlwhcnd7r1dl-eXsVXc_BY1cKEbPfqSjKc1LNiN3TtGPryiGLgLWhaZlKeuYd7jNPGByd_cFF3OG8d9Q7btGwlQI2I6hMqtZDKxMzYRqS1Qh-KhixCN-u0nhiZp9bzlnCjciETndZNbKSzhmkZ5UwzgfN-gQXEHqnfOn3efP6R4xnqWOAQ9wn9NBE8qm5P__fV__q_Gah9dQ8b3FvrOyyVuJQ0p4a0DHNusALfXrAVrkLRfrCjYnhT6L-GdJoX-63LY2IK5ROnifeGlvSOuscEYTAZu9ucehDqK7OICwWG5EaNAqkHiquBncoMfZc2HOnpYwuLE5fEEWgua9D_FCWvw_ygGLgfQKzFh4w5lzecVNykTsQmcg7BnnAq4TVglRYzU5KZ-54at9mMhtkrPkPFZ17xWVqD3echwymTx3vCm9XSZOWmHmcczyoWp0yKGuxVyzV7_eZkPz8kvQWL7V7nPDs_6Z5twFfuyy1CztsmzE9Gd-4XgqCJ_h2MkMD1Z1v9E4n5D80 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9tAEB5RKqH2gFpo1RTa7gEuVKusd9exc-ghKoTwCkgQiZu7L4tKyI6SIMSv4i8y49ikVG2lHrjasytrdtYzszvfNwBbdLAmMZfl0seCa2Uc7yZWc2cCBrO5CbkicPLJsDMY6cPL-HIJ7hssTFXt3lxJzjENxNJUzNpjn7cXwDd085gGy4hjEq54WldVHoW7W8zZpt8OdnGBt6Xs7118H_C6rQB3KurMuLZKGxcL57uRtQb9KRq1qjpbp53E6Tz1xGEincmVTmzacbHTwTthdZQLKxTO-wJeagIf4wYayd7joQ6x1YmKT5yK-3miZNTcpP7pq5_6wkWA-9udbOXq-m9gtY5RWW9uVG9hKRRr8PoX5sJ1KAd3flKOr0r707GT3mm7f77PXGmoiJqRZ_TsYm-4zzAkZtNwnXMKSAmlxUIFNmRXZlIRfKC4KfxcZkwd23AkUcmWHieuSSTQdN7B6FmU_B6Wi7IIH4B5jw-FCCHvBm2kS4OKXRQCBn4qmES2QDRazFxNbE79Na6zBSUzKT5DxWek-Cxtwc7jkPGc1eNfwpvN0mT1Bp9mEv9bIk6FVi342izX4vVfJ_v4X9JfYOVst58dHwyPNuCVJORFVf62CcuzyU34hPHQzH6ubJDBj-c2-geU6hQA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Hydrophobic+MAO%2FFSG+coating+based+TENG+for+self-healable+energy+harvesting+and+self-powered+cathodic+protection&rft.jtitle=Science+China.+Technological+sciences&rft.au=Liu%2C+YuPeng&rft.au=Sun%2C+WeiXiang&rft.au=Li%2C+TingHua&rft.au=Wang%2C+DaoAi&rft.date=2022-03-01&rft.issn=1674-7321&rft.eissn=1869-1900&rft.volume=65&rft.issue=3&rft.spage=726&rft.epage=734&rft_id=info:doi/10.1007%2Fs11431-021-1943-8&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s11431_021_1943_8 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1674-7321&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1674-7321&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1674-7321&client=summon |