Hydrophobic MAO/FSG coating based TENG for self-healable energy harvesting and self-powered cathodic protection

An organic/inorganic hybrid coating with self-healable hydrophobicity is prepared as triboelectrical layer by micro-arc oxidation (MAO) and fluorinated sol-gel (FSG) coating. The MAO/FSG hybrid coating-based TENG (MF-TENG) has a current output of 31 µA and voltage output of 870 V, which is eight tim...

Full description

Saved in:
Bibliographic Details
Published inScience China. Technological sciences Vol. 65; no. 3; pp. 726 - 734
Main Authors Liu, YuPeng, Sun, WeiXiang, Li, TingHua, Wang, DaoAi
Format Journal Article
LanguageEnglish
Published Beijing Science China Press 01.03.2022
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:An organic/inorganic hybrid coating with self-healable hydrophobicity is prepared as triboelectrical layer by micro-arc oxidation (MAO) and fluorinated sol-gel (FSG) coating. The MAO/FSG hybrid coating-based TENG (MF-TENG) has a current output of 31 µA and voltage output of 870 V, which is eight times that of the MAO based TENG. Compared with organic coating, the organic/inorganic hybrid coating has good wear resistance. When the fluorine composition on the surface of the coating is damaged, the self-healing hydrophobicity and electrical output are achieved by transferring loaded perfluorosilane to the damaged surface. The fluorinated sol-gel coating is hydrophobic, which ensures that the coating has good corrosion resistance. Also, the electricity generated in triboelectrification could improve the anti-corrosion performance by cathodic protection. Based on the anti-corrosion, anti-wear and self-healing properties, the MF-TENG has potential applicability in the field of energy collection, energy supply, and corrosion protection.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1674-7321
1869-1900
DOI:10.1007/s11431-021-1943-8