Feature-maximum-dependency-based fusion diagnosis method for COPD
Chronic Obstructive Pulmonary Disease (COPD) is a chronic lung disease that causes a progressive decline in respiratory function. COPD has become the fourth most lethal disease in the world, and worldwide deaths continue to become more common as a result of COPD. Therefore, it is important to help d...
Saved in:
Published in | Multimedia tools and applications Vol. 79; no. 21-22; pp. 15191 - 15208 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
New York
Springer US
01.06.2020
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Chronic Obstructive Pulmonary Disease (COPD) is a chronic lung disease that causes a progressive decline in respiratory function. COPD has become the fourth most lethal disease in the world, and worldwide deaths continue to become more common as a result of COPD. Therefore, it is important to help doctors diagnose COPD more accurately using big data analytics and effective algorithms. In the past, COPD was mainly studied as follows: applying data to determine the impact of a single feature on the disease, such as the effect of FEV1/FVC (forced expiratory volume in the first second/forced vital capacity), and analyzing a case with simple models, such as logistic regression or a support vector machine. Therefore, there are obviously deficiencies in previous studies. First, the impacts of multi-dimensional features on COPD have not been considered comprehensively. Second, there is no fusion of multiple study methods on the diagnosis and prognosis of COPD. Thus, this paper presents a feature-maximum-dependency-based fusion diagnosis method for COPD. First, the MDF-RS (feature maximum dependency-rough set) algorithm is proposed to extract the optimal combination of multi-dimensional features. Second, the integrated model DSA-SVM (direct search simulated annealing-support vector machine) is presented to classify the disease. Finally, the proposed method is experimentally tested. The results show that the algorithms outperform other classic methods. |
---|---|
ISSN: | 1380-7501 1573-7721 |
DOI: | 10.1007/s11042-018-6876-6 |