Superpermeability in Fusion Technology: Tritium Accumulation and Compression

Superpermeable membranes based on Group Va metals can be applied in fusion devices for a short way separation of D/T mixtures from He, for an active control of particle fluxes and as a general-purpose D/T pump that may be used in particularly in tritium handling systems. Superpermeable membranes bei...

Full description

Saved in:
Bibliographic Details
Published inFusion science and technology Vol. 41; no. 3P2; pp. 882 - 886
Main Authors Livshits, Alexander I., Hatano, Yuji, Watanabe, Kuniaki
Format Journal Article
LanguageEnglish
Published Taylor & Francis 01.05.2002
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Superpermeable membranes based on Group Va metals can be applied in fusion devices for a short way separation of D/T mixtures from He, for an active control of particle fluxes and as a general-purpose D/T pump that may be used in particularly in tritium handling systems. Superpermeable membranes being used for D/T separation from helium are able to drastically reduce the tritium load on the He pump (cryopump), while tritium accumulation in the membrane itself does not exceed a few g for a machine of ITER scale. A possible way to decrease the tritium inventory in the membrane is to combine a higher dissociative barrier at the upstream surface with the operation at higher temperature. Compression of permeating D/T attainable with superpermeable membranes is totally determined by the sticking coefficient of thermal hydrogen molecules at the upstream surface. The degree of compression has a significant effect on the tritium inventory and the inventory dependence on the state of the downstream surface.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ISSN:1536-1055
1943-7641
DOI:10.13182/FST02-A22711