Superpermeability in Fusion Technology: Tritium Accumulation and Compression
Superpermeable membranes based on Group Va metals can be applied in fusion devices for a short way separation of D/T mixtures from He, for an active control of particle fluxes and as a general-purpose D/T pump that may be used in particularly in tritium handling systems. Superpermeable membranes bei...
Saved in:
Published in | Fusion science and technology Vol. 41; no. 3P2; pp. 882 - 886 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Taylor & Francis
01.05.2002
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Superpermeable membranes based on Group Va metals can be applied in fusion devices for a short way separation of D/T mixtures from He, for an active control of particle fluxes and as a general-purpose D/T pump that may be used in particularly in tritium handling systems. Superpermeable membranes being used for D/T separation from helium are able to drastically reduce the tritium load on the He pump (cryopump), while tritium accumulation in the membrane itself does not exceed a few g for a machine of ITER scale. A possible way to decrease the tritium inventory in the membrane is to combine a higher dissociative barrier at the upstream surface with the operation at higher temperature. Compression of permeating D/T attainable with superpermeable membranes is totally determined by the sticking coefficient of thermal hydrogen molecules at the upstream surface. The degree of compression has a significant effect on the tritium inventory and the inventory dependence on the state of the downstream surface. |
---|---|
Bibliography: | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 |
ISSN: | 1536-1055 1943-7641 |
DOI: | 10.13182/FST02-A22711 |