Regulation of insulin-like growth factor-binding protein-1 by nitric oxide under hypoxic conditions

Nitric oxide (NO) is believed to play an important, but as yet undefined, role in regulating hypoxia inducible gene expression. Recently, we have reported evidence suggesting that the human insulin-like growth factor-binding protein-1 (IGFBP-1) gene is directly regulated by hypoxia through the hypox...

Full description

Saved in:
Bibliographic Details
Published inThe journal of clinical endocrinology and metabolism Vol. 85; no. 8; pp. 2714 - 2721
Main Authors SUGAWARA, J, SUH, D.-S, FAESSEN, G. H, SUEN, L.-F, SHIBATA, T, KAPER, F, GIACCIA, A. J, GIUDICE, L. C
Format Journal Article
LanguageEnglish
Published Bethesda, MD Endocrine Society 01.08.2000
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Nitric oxide (NO) is believed to play an important, but as yet undefined, role in regulating hypoxia inducible gene expression. Recently, we have reported evidence suggesting that the human insulin-like growth factor-binding protein-1 (IGFBP-1) gene is directly regulated by hypoxia through the hypoxia-inducible factor-1 pathway. The goal of the current study was to investigate NO regulation of hypoxic induction of IGFBP-1 gene expression using HepG2 cells, a model system of hepatic gene expression. We report that a NO generator, sodium nitroprusside, significantly diminishes hypoxic activation of IGFBP-1 protein and messenger ribonucleic acid expression. Furthermore, these effects are independent of guanylate cyclase/ cGMP signaling, as two different inhibitors, LY 83583, a specific inhibitor of guanylate cyclase, and KT 5823, a protein kinase G inhibitor, had no effect on IGFBP-1 induction by hypoxia. Hypoxic induction of a reporter gene containing four tandemly ligated hypoxia response elements was completely blocked by sodium nitroprusside, but not by 8-bromo-cGMP, an analog ofcGMP. These results suggest that NO blocks hypoxic induction of IGFBP-1 by a guanylate cyclase/ cGMP-independent pathway, possibly at the level of oxygen sensing. The impaired hypoxia regulation of IGFBP-1 by nitric oxide may play a key role in the hyperinduction of IGFBP-1 observed in pathophysiological conditions such as fetal hypoxia and preeclampsia where dysregulation of NO has been observed.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0021-972X
1945-7197
DOI:10.1210/jc.85.8.2714