Functional Electrospun Nanocomposites for Efficient Oxygen Reduction Reaction

E lectrospinning with a simple and controllable process has extremely received considerable concerns by virtue of the fabrication and development of nanofibers. Moreover, nanofibers are playing an increasing impact on energy conversion and storage devices, especially for fuel cells based on oxygen r...

Full description

Saved in:
Bibliographic Details
Published inChemical research in Chinese universities Vol. 37; no. 3; pp. 379 - 393
Main Authors Zhang, Xiuling, Guo, Shiquan, Qin, Yue, Li, Congju
Format Journal Article
LanguageEnglish
Published Changchun Jilin University and The Editorial Department of Chemical Research in Chinese Universities 01.06.2021
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:E lectrospinning with a simple and controllable process has extremely received considerable concerns by virtue of the fabrication and development of nanofibers. Moreover, nanofibers are playing an increasing impact on energy conversion and storage devices, especially for fuel cells based on oxygen reduction reaction(ORR), in view of the rich porosity, large surface area, excellent mass transportation and simply tunable composition, as well as good mechanical strength. In this review, we mainly introduce the primary principle of electrospinning technique, electrochemical reaction mechanism of ORR and synthetic strategies, and summarize the recent advances of unique non-noble-metal nanofibers on the basis of metal-organic framework(MOF) derivatives, single-atom catalysts(SACs) and transition metal oxides. More importantly, we emphasize on the influences of the components, morphology and architecture of advanced electrospun catalysts on their corresponding electrochemical performances towards ORR. Finally, the remaining puzzles and perspectives for further development of the electrospinning nanofibers involving electrocatalysis are presented. It is envisioned that this review would offer an important direction in designing novel electrocatalysts based on electrospinning nanofibrous structures and developing their potential.
ISSN:1005-9040
2210-3171
DOI:10.1007/s40242-021-1123-5