Hemicellulose-Based Films Reinforced with Unmodified and Cationically Modified Nanocrystalline Cellulose

Hemicellulose-based composites have become promising candidates for eco-friendly packaging applications because of their biodegradability and cost-effectiveness. However, the inherently poor mechanical properties of hemicellulose-based composites largely hinder their potential for targeted applicati...

Full description

Saved in:
Bibliographic Details
Published inJournal of polymers and the environment Vol. 26; no. 4; pp. 1625 - 1634
Main Authors Huang, Biaobiao, Tang, Yanjun, Pei, Qinqin, Zhang, Kaijie, Liu, Dongdong, Zhang, Xueming
Format Journal Article
LanguageEnglish
Published New York Springer US 01.04.2018
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Hemicellulose-based composites have become promising candidates for eco-friendly packaging applications because of their biodegradability and cost-effectiveness. However, the inherently poor mechanical properties of hemicellulose-based composites largely hinder their potential for targeted application. Fortunately, nanocrystalline cellulose (NCC), an eye-catching nanomaterial, may offer opportunities for addressing the above issue due to its outstanding mechanical properties and environmental friendliness. Herein, a comparative study was conducted on the effect of unmodified and cationically modified nanocrystalline cellulose (CNCC) on the overall properties of the as-prepared hemicelluloses (HC)/sorbitol (SB) films. Scanning electron microscopy (SEM) image shows that the addition of CNCC imparted a relatively smooth surface to the obtained HC/SB films in comparison to NCC. Furthermore, CNCC reinforced HC/SB films exhibited improved thermal stability as compared to that with NCC. From rheological behavior evaluation, the presence of NCC, particularly CNCC, had an important effect on thickening HC/SB suspensions. The tensile stress of the composite films with 9% NCC and 9% CNCC was 9.18 and 10.44 MPa, respectively, which was increased by 14 and 30% in comparison to that of pure HC/SB film (8.05 MPa). The marked increase in elastic modulus as a function of the added NCC or CNCC was also identified. This result strongly supports the conclusion that the addition of NCC or CNCC was effective in improving the mechanical properties of HC/SB films.
ISSN:1566-2543
1572-8919
1572-8900
DOI:10.1007/s10924-017-1075-5