Evaluation of wire arc additive manufacturing for large-sized components in naval applications

By extrapolating knowledge in multipass welding and developing multiaxial robot solutions, the wire deposit in 3D or wire arc additive manufacturing (WAAM) can be an innovative solution to propose a credible alternative for rough cast parts with a large size and a quite complex geometry such as diff...

Full description

Saved in:
Bibliographic Details
Published inWelding in the world Vol. 62; no. 2; pp. 259 - 266
Main Authors Queguineur, A., Rückert, G., Cortial, F., Hascoët, J. Y.
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Berlin Heidelberg 01.03.2018
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:By extrapolating knowledge in multipass welding and developing multiaxial robot solutions, the wire deposit in 3D or wire arc additive manufacturing (WAAM) can be an innovative solution to propose a credible alternative for rough cast parts with a large size and a quite complex geometry such as different components for naval application. In the framework of the Joint Laboratory of Marine Technology (JLMT), DCNS Research and Ecole Centrale de Nantes (ECN) are associated to develop especially additive manufacturing activities for large components. In this experimental study, the authors propose to investigate for two different metallic materials the conditions of the filler material deposit by the CMT® process and the consequences on the manufacturing time. Moreover, the in-service performance (mechanical and corrosion properties) is evaluated. In a first approach, austenitic stainless steel and copper-aluminum alloys have been evaluated.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0043-2288
1878-6669
DOI:10.1007/s40194-017-0536-8