Active flutter suppression control law design method based on balanced proper orthogonal decomposition reduced order model

Active control for nonlinear aeroelastic structures is an attractive innovative technology. The design of classic active flutter controllers has often been based on low-fidelity and low-accuracy linear aerodynamic models. Multi-physics high-fidelity reduced order model (ROM) was used to design activ...

Full description

Saved in:
Bibliographic Details
Published inNonlinear dynamics Vol. 70; no. 1; pp. 1 - 12
Main Authors Gang, Chen, Jian, Sun, Yueming, Li
Format Journal Article
LanguageEnglish
Published Dordrecht Springer Netherlands 01.10.2012
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Active control for nonlinear aeroelastic structures is an attractive innovative technology. The design of classic active flutter controllers has often been based on low-fidelity and low-accuracy linear aerodynamic models. Multi-physics high-fidelity reduced order model (ROM) was used to design active control laws. In order to provide a lower-order model for controllers design, a balanced proper orthogonal decomposition ROM (POD-BT/ROM) was investigated. A state-space aeroservoelastic model and the active flutter suppression control law design method based on POD-BT/ROM were proposed. The effectiveness of the proposed method was then demonstrated by NACA 0012 airfoil, AGARD 445.6 wing and the Goland wing+ aeroelastic model.
ISSN:0924-090X
1573-269X
DOI:10.1007/s11071-012-0392-4