Comparison of photonic nanojets key parameters produced by nonspherical microparticles
Photonic nanojet (PNJ) phenomenon arising near transparent dielectric microparticles subject to plane wave illumination in the visible is considered. The near-field light scattering patterns produced by shaped wavelength-sized particles (hexahedron, cuboid, sphere, hemisphere, axicon, assembled part...
Saved in:
Published in | Optical and quantum electronics Vol. 49; no. 3; pp. 1 - 7 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
New York
Springer US
01.03.2017
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Photonic nanojet (PNJ) phenomenon arising near transparent dielectric microparticles subject to plane wave illumination in the visible is considered. The near-field light scattering patterns produced by shaped wavelength-sized particles (hexahedron, cuboid, sphere, hemisphere, axicon, assembled particles) are numerically simulated and key PNJ parameters are analyzed. Particle shape influence on the peak intensity and spatial resolution of produced PNJ is investigated. We demonstrate that due to the reciprocal action of spherical-type and conical-type focusing of the special type of composite particles constituted of a hemisphere and an axicon can produce highly localized PNJ with peak intensity considerable higher than that for isolated regular particle (sphere, microaxicon, hemisphere). |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ISSN: | 0306-8919 1572-817X |
DOI: | 10.1007/s11082-017-0958-y |