Locally Homogeneous Axiom A Flows I: Projective Anosov Subgroups and Exponential Mixing

By constructing a non-empty domain of discontinuity in a suitable homogeneous space, we prove that every torsion-free projective Anosov subgroup is the monodromy group of a locally homogeneous contact Axiom A dynamical system with a unique basic hyperbolic set on which the flow is conjugate to the r...

Full description

Saved in:
Bibliographic Details
Published inGeometric and functional analysis Vol. 35; no. 3; pp. 673 - 735
Main Authors Delarue, Benjamin, Monclair, Daniel, Sanders, Andrew
Format Journal Article
LanguageEnglish
Published Cham Springer International Publishing 01.06.2025
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:By constructing a non-empty domain of discontinuity in a suitable homogeneous space, we prove that every torsion-free projective Anosov subgroup is the monodromy group of a locally homogeneous contact Axiom A dynamical system with a unique basic hyperbolic set on which the flow is conjugate to the refraction flow of Sambarino. Under the assumption of irreducibility, we utilize the work of Stoyanov to establish spectral estimates for the associated complex Ruelle transfer operators, and by way of corollary: exponential mixing, exponentially decaying error term in the prime orbit theorem, and a spectral gap for the Ruelle zeta function. With no irreducibility assumption, results of Dyatlov-Guillarmou imply the global meromorphic continuation of zeta functions with smooth weights, as well as the existence of a discrete spectrum of Ruelle-Pollicott resonances and (co)-resonant states. We apply our results to space-like geodesic flows for the convex cocompact pseudo-Riemannian manifolds of Danciger-Guéritaud-Kassel, and the Benoist-Hilbert geodesic flow for strictly convex real projective manifolds.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1016-443X
1420-8970
DOI:10.1007/s00039-025-00712-2