Two solutions for a fourth order nonlocal problem with indefinite potentials

We study the nonlocal equation Δ 2 u - m ∫ Ω | ∇ u | 2 d x Δ u = λ a ( x ) | u | q - 2 u + b ( x ) | u | p - 2 u , in Ω , subject to the boundary condition u = Δ u = 0 on ∂ Ω . For m continuous and positive we obtain a nonnegative solution if 1 < q < 2 < p ≤ 2 N / ( N - 4 ) and λ > 0 sma...

Full description

Saved in:
Bibliographic Details
Published inManuscripta mathematica Vol. 160; no. 1-2; pp. 199 - 215
Main Authors Figueiredo, Giovany M., Furtado, Marcelo F., da Silva, João Pablo P.
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Berlin Heidelberg 01.09.2019
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:We study the nonlocal equation Δ 2 u - m ∫ Ω | ∇ u | 2 d x Δ u = λ a ( x ) | u | q - 2 u + b ( x ) | u | p - 2 u , in Ω , subject to the boundary condition u = Δ u = 0 on ∂ Ω . For m continuous and positive we obtain a nonnegative solution if 1 < q < 2 < p ≤ 2 N / ( N - 4 ) and λ > 0 small. If the affine case m ( t ) = α + β t , we obtain a second solution if 4 < p < 2 N / ( N - 4 ) and N ∈ { 5 , 6 , 7 } . In the proofs we apply variational methods.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0025-2611
1432-1785
DOI:10.1007/s00229-018-1057-5