Ensuring valid inference for Cox hazard ratios after variable selection

The problem of how to best select variables for confounding adjustment forms one of the key challenges in the evaluation of exposure effects in observational studies, and has been the subject of vigorous recent activity in causal inference. A major drawback of routine procedures is that there is no...

Full description

Saved in:
Bibliographic Details
Published inBiometrics Vol. 79; no. 4; pp. 3096 - 3110
Main Authors Van Lancker, Kelly, Dukes, Oliver, Vansteelandt, Stijn
Format Journal Article
LanguageEnglish
Published United States Blackwell Publishing Ltd 01.12.2023
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The problem of how to best select variables for confounding adjustment forms one of the key challenges in the evaluation of exposure effects in observational studies, and has been the subject of vigorous recent activity in causal inference. A major drawback of routine procedures is that there is no finite sample size at which they are guaranteed to deliver exposure effect estimators and associated confidence intervals with adequate performance. In this work, we will consider this problem when inferring conditional causal hazard ratios from observational studies under the assumption of no unmeasured confounding. The major complication that we face with survival data is that the key confounding variables may not be those that explain the censoring mechanism. In this paper, we overcome this problem using a novel and simple procedure that can be implemented using off‐the‐shelf software for penalized Cox regression. In particular, we will propose tests of the null hypothesis that the exposure has no effect on the considered survival endpoint, which are uniformly valid under standard sparsity conditions. Simulation results show that the proposed methods yield valid inferences even when covariates are high‐dimensional.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0006-341X
1541-0420
DOI:10.1111/biom.13889