Fitness effect and transcription profile reveal sublethal effect of nitenpyram on the predator Chrysopa pallens (Neuroptera: Chrysopidae)
Although neonicotinoids are widely used and important insecticide, there are growing concerns about their effect on nontarget insects and other organisms. Moreover, the effects of nitenpyram (NIT), a second generation of neonicotinoid insecticides, on Chrysopa pallens are still unclear. Therefore, t...
Saved in:
Published in | Archives of insect biochemistry and physiology Vol. 115; no. 1; pp. e22073 - n/a |
---|---|
Main Authors | , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Wiley Subscription Services, Inc
01.01.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Although neonicotinoids are widely used and important insecticide, there are growing concerns about their effect on nontarget insects and other organisms. Moreover, the effects of nitenpyram (NIT), a second generation of neonicotinoid insecticides, on Chrysopa pallens are still unclear. Therefore, this study purposed to investigate the acute toxicity of NIT to C. pallens using the spotting method. To examine the potential effects of a sublethal dose of NIT (LD30, 1.85 ng of active ingredient per insect) on C. pallens, we constructed the life tables and analyzed the transcriptome data. The life table results showed that the period of second instar larvae, adult pre‐oviposition period and total pre‐oviposition period were significantly prolonged after exposure to sublethal dose of NIT, but had no significant effects on the other instars, longevity, oviposition days, and fecundity. The population parameters, including the preadult survival rate, gross reproduction rate, net reproductive rate, the intrinsic rate of increase, and finite rate of increase, were not significantly affected, and only the mean generation time was significantly prolonged by NIT. Transcriptome analysis showed that there were 68 differentially expressed genes (DEGs), including 50 upregulated genes and 18 downregulated genes. Moreover, 13 DEGs related to heat shock protein, nose resistant to fluoxetine protein 6, and prophenoloxidas were upregulated. This study showed the potential effects of sublethal doses of NIT on C. pallens and provided a theoretical reference for the comprehensive application of chemical and biological control in integrated pest management.
The LD30 of nitenpyram (NIT) elongates the developmental period, alters the transcriptome profile, but has no negative effect on the population growth parameters of Chrysopa pallens.
Highlights
The LD30 of nitenpyram (NIT) elongates the developmental period of Chrysopa pallens.
NIT LD30 has no negative effect on the population growth parameters of C. pallens, except for T.
NIT LD30 alters the transcriptome profile of C. pallens. |
---|---|
Bibliography: | Qiankun Du and Yongpan Shan are Co‐first authors. ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 0739-4462 1520-6327 |
DOI: | 10.1002/arch.22073 |