Structure of KOH-soluble polysaccharides from сoniferous greens of Norway spruce (Picea abies): The pectin-xylan-AGPs complex. Part 1

Using 7 % KOH, the polysaccharide PAK has been isolated from the coniferous greens of Norway spruce. PAK was found to contain predominantly arabinoglucuronoxylan, xyloglucan and arabinan, but also pectic polysaccharides, glucomannan and arabinogalactan proteins (AGPs), as determined by 1D/2D NMR ana...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of biological macromolecules Vol. 264; no. Pt 1; p. 130289
Main Authors Shakhmatov, Evgeny G., Makarova, Elena N.
Format Journal Article
LanguageEnglish
Published Netherlands Elsevier B.V 01.04.2024
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Using 7 % KOH, the polysaccharide PAK has been isolated from the coniferous greens of Norway spruce. PAK was found to contain predominantly arabinoglucuronoxylan, xyloglucan and arabinan, but also pectic polysaccharides, glucomannan and arabinogalactan proteins (AGPs), as determined by 1D/2D NMR analysis. It was found that fractionation of PAK on DEAE-cellulose resulted in simultaneous elution of pectins, arabinoglucuronoxylans and AGPs. It was evident that the content of 4-OMe-α-D-GlcpA and xylose, 1,4-β-D-GlcpA, and T-β-D-GlcpA increased with an increase in NaCl concentration. However, 1,4-α-D-GalpA content was almost independent of NaCl concentration, indicating unchanged pectic polysaccharide concentration. Interestingly, pectins extracted with 0.1–0.3 M NaCl solutions were richer in rhamnogalacturonan-I (RG-I) than those extracted with water and 0.01 M NaCl. Conclusion: The content of RG-I, AGPs and arabinoglucuronoxylan rises with rising NaCl concentration. An intense signal indicating an intermolecular linkage between the xylan and RG-I domains, i.e. that part of the arabinoglucuronoxylan is covalently bound to RG-I, is observed in the HMBC spectra of the polysaccharides obtained. The discovery here of a new relationship between rhamnogalacturonan I and xylan contradicts the prevailing cell wall model.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0141-8130
1879-0003
DOI:10.1016/j.ijbiomac.2024.130289