A high-fidelity light-powered nanomotor from a chemically fueled counterpart via site-specific optomechanical fuel control

Optically powered nanomotors are advantageous for clean nanotechnology over chemically fuelled nanomotors. The two motor types are further bounded by different physical principles. Despite the gap, we show here that an optically powered DNA bipedal nanomotor is readily created from a high-performing...

Full description

Saved in:
Bibliographic Details
Published inNanoscale Vol. 14; no. 15; pp. 5899 - 5914
Main Authors Liu, Xiao Rui, Hu, Xinpeng, Loh, Iong Ying, Wang, Zhisong
Format Journal Article
LanguageEnglish
Published England Royal Society of Chemistry 14.04.2022
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Optically powered nanomotors are advantageous for clean nanotechnology over chemically fuelled nanomotors. The two motor types are further bounded by different physical principles. Despite the gap, we show here that an optically powered DNA bipedal nanomotor is readily created from a high-performing chemically fuelled counterpart by subjecting its fuel to cyclic site-specific optomechanical control - as if the fuel is optically recharged. Optimizing azobenzene-based control of the original nucleotide fuel selects a light-responsive fuel analog that replicates the different binding affinity of the fuel and reaction products. The resultant motor largely retains high-performing features of the original chemical motor, and achieves the highest directional fidelity among reported light-driven DNA nanomotors. This study thus demonstrates a novel strategy for transforming chemical nanomotors to optical ones for clean nanotechnology. The strategy is potentially applicable to many chemical nanomotors with oligomeric fuels like nucleotides, peptides and synthetic polymers, leading to a new class of light-powered nanomotors that are akin to chemical nanomotors and benefit from their generally high efficiency mechanistically. The motor from this study also provides a rare model system for studying the subtle boundary between chemical and optical nanomotors - a topic pertinent to chemomechanical and optomechanical energy conversion at the single-molecule level.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:2040-3364
2040-3372
DOI:10.1039/d1nr07964f