Simulations of backgate sandwich nanowire MOSFETs with improved device performance

We propose a novel backgate sandwich nanowire MOSFET (SNFET), which offers the advantages of ETSOI (dynamic backgate voltage controllability) and nanowire FETs (good short channel effect). A backgate is used for threshold voltage (Vt) control of the SNFET. Compared with a backgate FinFET with a punc...

Full description

Saved in:
Bibliographic Details
Published inJournal of semiconductors Vol. 35; no. 10; pp. 45 - 50
Main Author 赵恒亮 朱慧珑 钟健 马小龙 魏星 赵超 陈大鹏 叶甜春
Format Journal Article
LanguageEnglish
Published 01.10.2014
Subjects
Online AccessGet full text
ISSN1674-4926
DOI10.1088/1674-4926/35/10/104005

Cover

Loading…
More Information
Summary:We propose a novel backgate sandwich nanowire MOSFET (SNFET), which offers the advantages of ETSOI (dynamic backgate voltage controllability) and nanowire FETs (good short channel effect). A backgate is used for threshold voltage (Vt) control of the SNFET. Compared with a backgate FinFET with a punch-through stop layer (PTSL), the SNFET possesses improved device performance. 3D device simulations indicate that the SNFET has a three times larger overdrive current, a -75% smaller off leakage current, and reduced subthreshold swing (SS) and DIBL than those of a backgate FinFET when the nanowire (NW) and the fin are of equal width. A new process flow to fabricate the backgate SNFET is also proposed in this work. Our analytical model suggests that Vt control by the backgate can be attributed to the capacitances formed by the frontgate, NW, and backgate. The SNFET devices are compatible with the latest state-of-the-art high-k/metal gate CMOS technology with the unique capability of independent backgate control for nFETs and pFETs, which is promising for sub-22 nm scaling down.
Bibliography:Zhao Hengliang, Zhu Huilong, Zhong Jian, Ma Xiaolong, Wei Xing, Zhao Chao, Chert Dapeng, Ye Tianchun( Key Laboratory of Microelectronics Devices and Integrated Technology, Institute of Microelectronics, Chinese Academy of Sciences, Beijing 100029, China)
sandwich nanowire MOSFET; backgate; TCAD; analytical model
We propose a novel backgate sandwich nanowire MOSFET (SNFET), which offers the advantages of ETSOI (dynamic backgate voltage controllability) and nanowire FETs (good short channel effect). A backgate is used for threshold voltage (Vt) control of the SNFET. Compared with a backgate FinFET with a punch-through stop layer (PTSL), the SNFET possesses improved device performance. 3D device simulations indicate that the SNFET has a three times larger overdrive current, a -75% smaller off leakage current, and reduced subthreshold swing (SS) and DIBL than those of a backgate FinFET when the nanowire (NW) and the fin are of equal width. A new process flow to fabricate the backgate SNFET is also proposed in this work. Our analytical model suggests that Vt control by the backgate can be attributed to the capacitances formed by the frontgate, NW, and backgate. The SNFET devices are compatible with the latest state-of-the-art high-k/metal gate CMOS technology with the unique capability of independent backgate control for nFETs and pFETs, which is promising for sub-22 nm scaling down.
11-5781/TN
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1674-4926
DOI:10.1088/1674-4926/35/10/104005