Stomatal pore size and density in mangrove leaves and artificial leaves: effects on leaf water isotopic enrichment during transpiration

We tested the hypothesis that the previously observed low isotopic enrichment of mangrove leaf water is caused by larger stomatal pores and lower densities compared with freshwater plants. First, we measured and compared pore size and density in mangroves, transitional and freshwater species in Sout...

Full description

Saved in:
Bibliographic Details
Published inFunctional plant biology : FPB Vol. 41; no. 6; pp. 648 - 658
Main Authors Sternberg, Leonel da Silveira Lobo, Manganiello, Lynn M
Format Journal Article
LanguageEnglish
Published CSIRO Publishing 01.01.2014
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:We tested the hypothesis that the previously observed low isotopic enrichment of mangrove leaf water is caused by larger stomatal pores and lower densities compared with freshwater plants. First, we measured and compared pore size and density in mangroves, transitional and freshwater species in South Florida. We pooled this data with other reports encompassing 14 mangrove species and 134 freshwater species and tested for differences in pore size and density between mangroves and freshwater plants. Second, we built artificial leaves having different pore size and density and determined whether there were isotopic differences in their water after transpiration. Both the local survey and pooled data showed that mangrove leaves have significantly larger stomatal pores with lower densities compared with freshwater plants. Isotope enrichment of water from artificial leaves having larger less dense pores was lower than those having smaller and denser pores. Stomatal pore size and density has an effect on leaf water isotopic enrichment amongst other factors. Pore size and density probably affects key components of the Peclet ratio such as the distance advective flow of water must travel to the evaporative surface and the cross-sectional area of advective flow. These components, in turn, affect leaf water isotopic enrichment. Results from the artificial leaf experiment also mimic a recent finding that effective path length scales to the inverse of transpiration in real leaves. The implications of these findings further our understanding of leaf water isotope ratios and are important in applications of stable isotopes in the study of paleoclimate and atmospheric processes.
Bibliography:http://dx.doi.org/10.1071/FP13235
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1445-4408
1445-4416
DOI:10.1071/FP13235