Design of an efficient monochromatic electron source for inverse photoemission spectroscopy
A design for an efficient monochromatic electron source for Inverse Photoemission Spectroscopy (IPES) apparatus is described. The electron source consists of a BaO cathode, a focus electrostatic lens, a hemispherical deflection monochromator (HDM), and a transfer electrostatic lens. The HDM adopts a...
Saved in:
Published in | Chinese physics C Vol. 38; no. 11; pp. 115 - 120 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
01.11.2014
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | A design for an efficient monochromatic electron source for Inverse Photoemission Spectroscopy (IPES) apparatus is described. The electron source consists of a BaO cathode, a focus electrostatic lens, a hemispherical deflection monochromator (HDM), and a transfer electrostatic lens. The HDM adopts a “slit-in and slit-out” structure and the degradation of first-order focusing is corrected by two electrodes between the two hemispheres, which has been investigated by both analytical methods and electron-ray tracing simulations using the SIMION program. Through the focus lens, the HDM, and the standard five-element transfer lens, an optimal energy resolution is estimated to be about 53 MeV with a beam flux of 27 μA. Pass energy (P.E.) of 10 eV and 5 eV are discussed, respectively. |
---|---|
Bibliography: | beam flux, electrostatic lens, hemispherical deflection monochromator, fringing effect, energy resolu-tion, SIMION 11-5641/O4 A design for an efficient monochromatic electron source for Inverse Photoemission Spectroscopy (IPES) apparatus is described. The electron source consists of a BaO cathode, a focus electrostatic lens, a hemispherical deflection monochromator (HDM), and a transfer electrostatic lens. The HDM adopts a “slit-in and slit-out” structure and the degradation of first-order focusing is corrected by two electrodes between the two hemispheres, which has been investigated by both analytical methods and electron-ray tracing simulations using the SIMION program. Through the focus lens, the HDM, and the standard five-element transfer lens, an optimal energy resolution is estimated to be about 53 MeV with a beam flux of 27 μA. Pass energy (P.E.) of 10 eV and 5 eV are discussed, respectively. GENG Dong-Ping, YANG Ying-Guo, LIU Shu-Hu, HONG Cai-Hao, GAO Xing-Yu( 1 Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China ; 2 Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China) ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 1674-1137 0254-3052 |
DOI: | 10.1088/1674-1137/38/11/118202 |