Time-Resolved Visualization of Laser-Induced Heating of Gold with MeV Ultrafast Electron Diffraction
Time-resolved electron diffraction employing MeV electron beams is demonstrated experimentally at the center for ultrafast diffraction and microscopy of Shanghai Jiao Tong University. A high-quality diffraction pattern is recorded by a single shot of electron pulse. Synchronization between the pump...
Saved in:
Published in | Chinese physics letters Vol. 31; no. 11; pp. 111 - 114 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
01.11.2014
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Time-resolved electron diffraction employing MeV electron beams is demonstrated experimentally at the center for ultrafast diffraction and microscopy of Shanghai Jiao Tong University. A high-quality diffraction pattern is recorded by a single shot of electron pulse. Synchronization between the pump laser and the probe electron beam is achieved through measurement of electron deflection caused by the laser-induced plasmas in a metal tip. We study the ultrafast structural dynamics of the gold lattice excited by a femtosecond laser through tracing the change of Bragg peaks intensity at different time delays. It is expected that the combination of MeV ultrashort electron beams and femtoseeond laser pulses will open many new opportunities in the ultrafast and ultrasmall world. |
---|---|
Bibliography: | 11-1959/O4 Time-resolved electron diffraction employing MeV electron beams is demonstrated experimentally at the center for ultrafast diffraction and microscopy of Shanghai Jiao Tong University. A high-quality diffraction pattern is recorded by a single shot of electron pulse. Synchronization between the pump laser and the probe electron beam is achieved through measurement of electron deflection caused by the laser-induced plasmas in a metal tip. We study the ultrafast structural dynamics of the gold lattice excited by a femtosecond laser through tracing the change of Bragg peaks intensity at different time delays. It is expected that the combination of MeV ultrashort electron beams and femtoseeond laser pulses will open many new opportunities in the ultrafast and ultrasmall world. ZHU Peng-Fei, FU Fei-Chao, LIU Sheng-Guang, XIANG Dao, ZHANG Jie, CAO Jian-Ming( 1.Key Laboratory for Laser Plasmas (Ministry of Education), Department of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240 ;2.Department of Physics and National High Magnetic Field Laboratory, Florida State University, Tallahassee Florida 32310, USA) ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 0256-307X 1741-3540 |
DOI: | 10.1088/0256-307X/31/11/116101 |