Human RNA-binding protein HNRNPD interacts with and regulates the repair of deoxyribouridine in DNA

Deoxyribouridine (dU) is an abnormal nucleoside in DNA and plays vital roles in multiple biological and physiological processes. Here, we conducted a mass spectrometry-based screen for dU-binding proteins and found that the heterogeneous nuclear ribonucleoprotein D (HNRNPD) could preferentially bind...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of biological macromolecules Vol. 262; no. Pt 1; p. 129951
Main Authors Wang, Ziyu, Qu, Minghui, Chang, Sijia, Dai, Xiaoxia, You, Changjun
Format Journal Article
LanguageEnglish
Published Netherlands Elsevier B.V 01.03.2024
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Deoxyribouridine (dU) is an abnormal nucleoside in DNA and plays vital roles in multiple biological and physiological processes. Here, we conducted a mass spectrometry-based screen for dU-binding proteins and found that the heterogeneous nuclear ribonucleoprotein D (HNRNPD) could preferentially bind to dU-containing DNA. We also discovered that HNRNPD engages in the 5-Fluorouracil (5FU)-induced DNA damage response and can modulate the repair of dU in DNA in vitro and in human cells. Moreover, using a shuttle vector- and next-generation sequencing-based method, we unveiled the crucial role of HNRNPD in promoting the replicative bypass of dU in human cells. Taken together, these findings suggested that HNRNPD is a novel dU-bearing DNA-binding protein capable of regulating the removal of dU in DNA, and provided new insights into the molecular mechanisms of dU-associated diseases. [Display omitted]
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0141-8130
1879-0003
DOI:10.1016/j.ijbiomac.2024.129951