An energy-based pulsar period estimation method using Hilbert curve and double CNNs

In order to accurately estimate the period of X-ray pulsars to improve navigation performance, this paper proposes a pulsar period estimation method based on photon energy using reverse Hilbert coding and double Convolutional Neural Networks (CNNs) discrimination. This method uses photon energy info...

Full description

Saved in:
Bibliographic Details
Published inActa astronautica Vol. 219; pp. 79 - 90
Main Authors Ma, Xin, Xie, Tianhao, Li, Junru, Zhang, Wenjia, Cheng, Yifei, Cui, Peiling, Ning, Xiaolin
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.06.2024
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:In order to accurately estimate the period of X-ray pulsars to improve navigation performance, this paper proposes a pulsar period estimation method based on photon energy using reverse Hilbert coding and double Convolutional Neural Networks (CNNs) discrimination. This method uses photon energy information to perform epoch folding. It converts one-dimensional contour information into two-dimensional image signals through reverse Hilbert curve and recognizes contour image features through CNN models to determine the optimal period. According to the simulation results, the period estimation accuracy of this method is 0.5350 ns, which is 65.71% higher than the χ2 epoch folding method. The contour phase accuracy is 0.0004767, which is 41.93% higher than the χ2 epoch folding method. At the same time, the observation time and noise interference that may affect the accuracy of period estimation are also quantitatively analyzed. In addition, in order to simulate real navigation scenarios, this paper also conducts dynamic period estimation experiments on PSR B0531+21 pulsar in a specific period of time. The method proposed in this paper has the advantages of high precision, fast calculation speed, strong anti-interference ability and accurate dynamic period estimation, which can significantly improve the navigation performance of X-ray pulsars. •The proposed period estimation method uses photon energy information for contour weighted folding.•The proposed method uses reverse Hilbert curve to convert one-dimensional contour information into two-dimensional image information.•Convolutional Neural Network models are used to optimize pulsar period estimation. [Display omitted]
ISSN:0094-5765
DOI:10.1016/j.actaastro.2024.02.037