Effect of Marangoni Number on Thermocapillary Convection and Free-Surface Deformation in Liquid Bridges

Floating zone technique is a crucible-free process for growth of high quality single crystals. Unstable thermocapillary convection is a typical phenomenon during the process under microgravity. Therefore, it is very important to investigate the instability of thermocapillary convection in liquid bri...

Full description

Saved in:
Bibliographic Details
Published inJournal of thermal science Vol. 25; no. 2; pp. 178 - 187
Main Authors Zhang, Yin, Huang, Hu-Lin, Zhou, Xiao-Ming, Zhu, Gui-Ping, Zou, Yong
Format Journal Article
LanguageEnglish
Published Heidelberg Science Press 01.04.2016
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Floating zone technique is a crucible-free process for growth of high quality single crystals. Unstable thermocapillary convection is a typical phenomenon during the process under microgravity. Therefore, it is very important to investigate the instability of thermocapillary convection in liquid bridges with deformable free-surface under microgravity. In this works, the Volume of Fluid(VOF) method is employed to track the free-surface movement. The results are presented as the behavior of flow structure and temperature distribution of the molten zone. The impact of Marangoni number(Ma) is also investigated on free-surface deformation as well as the instability of thermocapillary convection. The free-surface exhibits a noticeable axisymmetric(but it is non-centrosymmetric) and elliptical shape along the circumferential direction. This specific surface shape presents a typical narrow ‘neck-shaped' structure with convex at two ends of the zone and concave at the mid-plane along the axial direction. At both θ = 0° and θ = 90°, the deformation ratio ξ increases rapidly with Ma at first, and then increases slowly. Moreover, the hydrothermal wave number m and the instability of thermocapillary convection increase with Ma.
Bibliography:11-2853/O4
Floating zone technique is a crucible-free process for growth of high quality single crystals. Unstable thermocapillary convection is a typical phenomenon during the process under microgravity. Therefore, it is very important to investigate the instability of thermocapillary convection in liquid bridges with deformable free-surface under microgravity. In this works, the Volume of Fluid(VOF) method is employed to track the free-surface movement. The results are presented as the behavior of flow structure and temperature distribution of the molten zone. The impact of Marangoni number(Ma) is also investigated on free-surface deformation as well as the instability of thermocapillary convection. The free-surface exhibits a noticeable axisymmetric(but it is non-centrosymmetric) and elliptical shape along the circumferential direction. This specific surface shape presents a typical narrow ‘neck-shaped' structure with convex at two ends of the zone and concave at the mid-plane along the axial direction. At both θ = 0° and θ = 90°, the deformation ratio ξ increases rapidly with Ma at first, and then increases slowly. Moreover, the hydrothermal wave number m and the instability of thermocapillary convection increase with Ma.
thermocapillary convection microgravity Floating zone deformable free-surface VOF liquid bridge
ISSN:1003-2169
1993-033X
DOI:10.1007/s11630-016-0849-8