Effects of nitric oxide on force-generating proteins of skeletal muscle
Nitric oxide (NO) has recently been identified as a physiologically important intracellular messenger modulating the contractile activity of skeletal muscle [Kobzik L, Reid MB, Bredt DS, Stamler JS (1994) Nature 372: 546-548]. However, the mechanism of action of NO is not yet known. We used skinned...
Saved in:
Published in | Pflügers Archiv Vol. 434; no. 3; pp. 242 - 245 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Germany
Springer Nature B.V
01.07.1997
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Nitric oxide (NO) has recently been identified as a physiologically important intracellular messenger modulating the contractile activity of skeletal muscle [Kobzik L, Reid MB, Bredt DS, Stamler JS (1994) Nature 372: 546-548]. However, the mechanism of action of NO is not yet known. We used skinned (demembranated) muscle fibres to investigate the mechanism of NO function in muscle contraction. Maximally Ca2+-activated single fibres of rat skeletal muscle were exposed to physiologically relevant NO concentrations by adding NO donor molecules into the bath solution. Donor application caused a decline both in the contractile properties and in the myofibrillar adenosine triphosphatase (ATPase) activity. These results reveal a novel molecular mechanism of NO action: a direct inhibition of the force-generating proteins in skeletal muscle. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 0031-6768 1432-2013 |
DOI: | 10.1007/s004240050391 |