Finitary Semantics of Linear Logic and Higher-Order Model-Checking

In this paper, we explain how the connection between higher-order model-checking and linear logic recently exhibited by the authors leads to a new and conceptually enlightening proof of the selection problem originally established by Carayol and Serre using collapsible pushdown automata. The main id...

Full description

Saved in:
Bibliographic Details
Published inMathematical Foundations of Computer Science 2015 pp. 256 - 268
Main Authors Grellois, Charles, Melliès, Paul-André
Format Book Chapter
LanguageEnglish
Published Berlin, Heidelberg Springer Berlin Heidelberg 2015
SeriesLecture Notes in Computer Science
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:In this paper, we explain how the connection between higher-order model-checking and linear logic recently exhibited by the authors leads to a new and conceptually enlightening proof of the selection problem originally established by Carayol and Serre using collapsible pushdown automata. The main idea is to start from an infinitary and colored relational semantics of the λY\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda \,Y$$\end{document}-calculus formulated in a companion paper, and to replace it by a finitary counterpart based on finite prime-algebraic lattices. Given a higher-order recursion scheme G\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {G}$$\end{document}, the finiteness of its interpretation in the resulting model enables us to associate to any MSO formula φ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varphi $$\end{document} a higher-order recursion scheme Gφ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {G}_{\varphi }$$\end{document} resolving the selection problem.
ISBN:3662480565
9783662480564
ISSN:0302-9743
1611-3349
DOI:10.1007/978-3-662-48057-1_20