Quantum correlation switches for dipole arrays

We investigate the characteristics of three kinds of quantum correlations, measured by pairwise quantum discord (QD), geometric measure of quantum discord (GMQD), and measurement-induced disturbance (MID), in the systems of three- and four-dipole arrays. The influence of the temperature on the three...

Full description

Saved in:
Bibliographic Details
Published inChinese physics B Vol. 23; no. 11; pp. 186 - 193
Main Author 李艳杰 刘金明 张燕
Format Journal Article
LanguageEnglish
Published 01.11.2014
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:We investigate the characteristics of three kinds of quantum correlations, measured by pairwise quantum discord (QD), geometric measure of quantum discord (GMQD), and measurement-induced disturbance (MID), in the systems of three- and four-dipole arrays. The influence of the temperature on the three quantum correlations and entanglement of the systems is also analyzed numerically. It is found that novel quantum correlation switches called QD, GMQD, and MID respectively can be constructed with the qubits consisting of electric dipoles coupled by the dipole-dipole interaction and oriented along or against the external electric field. Moreover, with the increase of temperature, QD, GMQD, and MID are more robust than entanglement against the thermal environment. It is also found that for each dipole pair of the three- and four-dipole arrangements, the MID is always the largest and the GMQD the smallest.
Bibliography:Li Yan-Jie. Liu Jin-Ming. and Zhang Yan( State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200062, China)
dipole arrays, quantum discord, geometric measure of quantum discord, measurement-induceddisturbance
We investigate the characteristics of three kinds of quantum correlations, measured by pairwise quantum discord (QD), geometric measure of quantum discord (GMQD), and measurement-induced disturbance (MID), in the systems of three- and four-dipole arrays. The influence of the temperature on the three quantum correlations and entanglement of the systems is also analyzed numerically. It is found that novel quantum correlation switches called QD, GMQD, and MID respectively can be constructed with the qubits consisting of electric dipoles coupled by the dipole-dipole interaction and oriented along or against the external electric field. Moreover, with the increase of temperature, QD, GMQD, and MID are more robust than entanglement against the thermal environment. It is also found that for each dipole pair of the three- and four-dipole arrangements, the MID is always the largest and the GMQD the smallest.
11-5639/O4
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1674-1056
2058-3834
1741-4199
DOI:10.1088/1674-1056/23/11/110306