Survival probability surfaces of hysteretic fractional order structures exposed to non-stationary code-compliant stochastic seismic excitation

A novel first-passage probability stochastic incremental dynamics analysis (SIDA) methodology tailored for hysteretic fractional order structural systems under a fully non-stationary seismic excitation vector consistently designated with contemporary aseismic codes provisions (e.g., Eurocode 8) is d...

Full description

Saved in:
Bibliographic Details
Published inEngineering structures Vol. 318; p. 118755
Main Authors Mitseas, Ioannis P., Ni, Peihua, Fragkoulis, Vasileios C., Beer, Michael
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.11.2024
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:A novel first-passage probability stochastic incremental dynamics analysis (SIDA) methodology tailored for hysteretic fractional order structural systems under a fully non-stationary seismic excitation vector consistently designated with contemporary aseismic codes provisions (e.g., Eurocode 8) is developed. Specifically, the vector of the imposed seismic excitations is characterised by evolutionary power spectra that stochastically align with aseismic codes elastic response acceleration spectra, defined for specified modal damping ratios and scaled ground accelerations. Leveraging the concepts of stochastic averaging and statistical linearization, the approximative non-stationary response displacement joint probability density function (PDF) is derived, retaining the particularly coveted attribute of computational efficacy. Subsequently, the coupling with the survival probability model allows for the efficient determination of the response first-passage time probability density surfaces and the survival probability surfaces across various limit-state rules and scalable intensity measures. The first-passage time probability serves as a robust engineering demand parameter, effectively monitoring structural behaviour by considering both intensity and timing information, while inherently aligned with pertinent limit-state requirements. Notably, the associated low computational cost and the ability to handle a wide range of complex nonlinear/hysteretic structural behaviours, coupled with its compliance with modern aseismic codes, underscore its potential for applications in the fields of structural and earthquake engineering. A nonlinear system endowed with fractional derivative elements is used to exemplify the method’s reliability. The accuracy of the proposed method is validated in a Monte Carlo-based context, conducting nonlinear response time–history analyses with an extensive ensemble of accelerograms compatible with Eurocode 8 response acceleration spectra. •First-passage PDF-based SIDA method for hysteretic fractional order structures.•First-passage probability density surfaces providing with higher-order statistics.•Survival SIDA probability surfaces for reliability/fragility analysis.•Statistical description of the EDP addressing timing and intensity peculiarities.•Low computational cost enhancing its potential for various engineering applications.
ISSN:0141-0296
DOI:10.1016/j.engstruct.2024.118755