Properties of polaron in a triangular quantum well induced by the Rashba effect

The properties of the weakly-coupling bound polaron, considering an influence of Rashba effect, which is brought about by the spin-orbit (SO) interaction, in an semiconductor triangular quantum well (TQW), have been studied by using the linear combination operator and the unitary transformation meth...

Full description

Saved in:
Bibliographic Details
Published inJournal of semiconductors Vol. 35; no. 10; pp. 1 - 4
Main Author 张海瑞 孙勇
Format Journal Article
LanguageEnglish
Published 01.10.2014
Subjects
Online AccessGet full text
ISSN1674-4926
DOI10.1088/1674-4926/35/10/102001

Cover

More Information
Summary:The properties of the weakly-coupling bound polaron, considering an influence of Rashba effect, which is brought about by the spin-orbit (SO) interaction, in an semiconductor triangular quantum well (TQW), have been studied by using the linear combination operator and the unitary transformation methods. We obtain an expression for the ground state energy of the weak-coupling and bound polaron in a TQW as a function of the coupling constant, Coulomb bound potential, and the electron areal density. Our numerical resuks show that the ground state energy of the polaron is composed of four parts, one part is caused by the electrons' own energy, the second part is caused by the Rashba effect, the third part occurs because of the Coulomb bound potential, and the last term is induced by the interaction between the electrons and LO phonons. The interactions between the orbit and the spin with different directions have different effects on the ground state energy of the polaron.
Bibliography:Zhang Hairui,Sun Yong( 1Department of Mathematics, Huhhot University of Nationalities, Huhhot 010051, China 2College of Physics and Electronic Information, Inner Mongolia National University, Tongliao 028043, China)
The properties of the weakly-coupling bound polaron, considering an influence of Rashba effect, which is brought about by the spin-orbit (SO) interaction, in an semiconductor triangular quantum well (TQW), have been studied by using the linear combination operator and the unitary transformation methods. We obtain an expression for the ground state energy of the weak-coupling and bound polaron in a TQW as a function of the coupling constant, Coulomb bound potential, and the electron areal density. Our numerical resuks show that the ground state energy of the polaron is composed of four parts, one part is caused by the electrons' own energy, the second part is caused by the Rashba effect, the third part occurs because of the Coulomb bound potential, and the last term is induced by the interaction between the electrons and LO phonons. The interactions between the orbit and the spin with different directions have different effects on the ground state energy of the polaron.
11-5781/TN
triangular quantum well; spintronics; the ground state energy; Rashba effect
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1674-4926
DOI:10.1088/1674-4926/35/10/102001