Wrinkling patterns in soft shells

Curvature plays an important role in the morphological evolution of soft shells under stretch. Here, through a combination of experiment, theory and simulation, we investigate the behavior of a hemispherical soft shell subject to an increasing outward point force at its pole. In contrast to an inwar...

Full description

Saved in:
Bibliographic Details
Published inSoft matter Vol. 14; no. 9; pp. 1681 - 1688
Main Authors Zhang, Cheng, Hao, Yu-Kun, Li, Bo, Feng, Xi-Qiao, Gao, Huajian
Format Journal Article
LanguageEnglish
Published England Royal Society of Chemistry 2018
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Curvature plays an important role in the morphological evolution of soft shells under stretch. Here, through a combination of experiment, theory and simulation, we investigate the behavior of a hemispherical soft shell subject to an increasing outward point force at its pole. In contrast to an inward point force inducing a polygonal pattern of buckling in the shell, we observe a four-stage morphological transition and symmetry breaking under an increasing outward point force. The shell undergoes axisymmetric deformation around its pole and then buckles into a non-axisymmetric shape with a number of shallow wrinkles emanating from the pole, followed by the emergence of crater-like deep crumples and ultimately a transformation into a wrinkled pseudocone. Our theoretical analysis and numerical simulations yield the critical conditions for the morphological transitions at each stage of deformation and reveal the underlying interplays between elastic bending and stretching energies and the curvature of the shell.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:1744-683X
1744-6848
1744-6848
DOI:10.1039/C7SM02261A