Electron Beam Lithographic Pixelated Micropolarizer Array for Real-Time Phase Measurement
Pixelated micropolarizer arrays (PMAs) have recently been used as key components to achieve real-time phase measurement. PMA fabrication by electron beam lithography and inductively coupled plasma-reactive ion etching is proposed in this work. A 320 × 240 aluminum PMA with 7.4 μm pitch is successful...
Saved in:
Published in | Chinese physics letters Vol. 31; no. 11; pp. 81 - 84 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
01.11.2014
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Pixelated micropolarizer arrays (PMAs) have recently been used as key components to achieve real-time phase measurement. PMA fabrication by electron beam lithography and inductively coupled plasma-reactive ion etching is proposed in this work. A 320 × 240 aluminum PMA with 7.4 μm pitch is successfully fabricated by the proposed technique. The period of the grating is 140nm, and the polarization directions of each of the 2 × 2 units are 0°, 45°, 90°, and 135°. The scanning electron microscopy and optical microscopy results show that the PMA has a good surface characteristic and polarization performances. When the PMA is applied to phase-shifting interferometry, four fringe patterns of different polarization directions are obtained from only one single frame image, and then the object wave phase is calculated in real time. |
---|---|
Bibliography: | ZHANG Zhi-Gang, DONG Feng-Liang, CHENG Teng, QIAN Ke-Mao,QIU Kang, ZHANG Qing-Chuan, CHU Wei-Guo, WU Xiao-Ping( 1.CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, University of Science and Technology of China, Hefei 230027; 2.Nanofabrication Laboratory, National Center for Nanoscience and Technology, Beijing 100190; 3.School of Computer Engineering, Nanyang Technological University, Singapore 639798, Singapore) 11-1959/O4 Pixelated micropolarizer arrays (PMAs) have recently been used as key components to achieve real-time phase measurement. PMA fabrication by electron beam lithography and inductively coupled plasma-reactive ion etching is proposed in this work. A 320 × 240 aluminum PMA with 7.4 μm pitch is successfully fabricated by the proposed technique. The period of the grating is 140nm, and the polarization directions of each of the 2 × 2 units are 0°, 45°, 90°, and 135°. The scanning electron microscopy and optical microscopy results show that the PMA has a good surface characteristic and polarization performances. When the PMA is applied to phase-shifting interferometry, four fringe patterns of different polarization directions are obtained from only one single frame image, and then the object wave phase is calculated in real time. ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 0256-307X 1741-3540 |
DOI: | 10.1088/0256-307X/31/11/114208 |