C-F activation of perfluorophenazine at nickel: selectivity and mechanistic investigations

The reactivity of [Ni(cod)2] towards perfluorophenazine in the presence of phosphines is reported. When PiPr3 and PCy3 are used, an initial κ-(N) coordination of the nickel centre to the nitrogen atom of the perfluorophenazine ring occurs, forming the dark blue complexes [Ni{κ-(N)-C12N2F8}(PiPr3)2]...

Full description

Saved in:
Bibliographic Details
Published inDalton transactions : an international journal of inorganic chemistry Vol. 48; no. 18; pp. 6153 - 6161
Main Authors Torres, Òscar, Pfister, Nils, Braun, Thomas, Wittwer, Philipp
Format Journal Article
LanguageEnglish
Published England Royal Society of Chemistry 07.05.2019
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The reactivity of [Ni(cod)2] towards perfluorophenazine in the presence of phosphines is reported. When PiPr3 and PCy3 are used, an initial κ-(N) coordination of the nickel centre to the nitrogen atom of the perfluorophenazine ring occurs, forming the dark blue complexes [Ni{κ-(N)-C12N2F8}(PiPr3)2] (1) and [Ni{κ-(N)-C12N2F8}(PCy3)2] (2). Complex 1 was structurally characterized by X-ray diffraction analysis. The complexes rearranged by regioselective C-F activation of the perfluorophenazine ring in the 2-position to yield complexes trans-[NiF(2-C12N2F7)(PiPr3)2] (5) and trans-[NiF(2-C12N2F7)(PCy3)2] (6). The structure of 6 was also determined by X-ray diffraction analysis. Kinetic measurements for the decrease of 1 at different temperatures reveal a first order reaction with ΔH‡ = 19 ± 7 kcal mol-1. Initially, small amounts of an intermediate, assigned as [Ni(η2-1,2-C12N2F8)(PiPr3)2] (3), were observed, which exhibits a 1,2-η2 coordination of the perfluorophenazine. DFT calculations on the same transformation were also computed, which suggest that both a phosphine-assisted mechanism and an oxidative addition can be operating reaction pathways. The 1,2-η2 complex [Ni(η2-1,2-C12N2F8)(PEt3)2] (4) was obtained when PEt3 was used as ligand, and an unstable dark red complex trans-[NiF(2-C12N2F7)(PEt3)2] (7) formed rapidly by C-F activation. The reactivity of the perfluorophenazine was compared with those of perfluorodibenzo-p-dioxin. In this case, no prior coordination was observed and the C-F activation took place in a less selective manner forming trans-[NiF(1-C12O2F7)(PiPr3)2] (8) and trans-[NiF(2-C12O2F7)(PiPr3)2] (9), outlining the role of the nitrogen for the selectivity of the process. Treatment of two equivalents of [Ni(cod)2] and four equivalents of PiPr3 with perfluorophenazine afforded a double C-F activation to give [{trans-(PiPr3)2NiF}2(2,7-C12N2F6)] (10).
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1477-9226
1477-9234
DOI:10.1039/c9dt00780f