Fabrication of Through Micro-hole Arrays in Silicon Using Femtosecond Laser Irradiation and Selective Chemical Etching

We demonstrate a method of fabricating through micro-holes and micro-hole arrays in silicon using femtosecond laser irradiation and selective chemical etching. The micro-hole formation mechanism is identified as the chemical reaction of the femtosecond laser-induced structure change zone and hydrofl...

Full description

Saved in:
Bibliographic Details
Published inChinese physics letters Vol. 32; no. 10; pp. 142 - 145
Main Author 高博 陈涛 陈颖 司金海 侯洵
Format Journal Article
LanguageEnglish
Published 01.10.2015
Subjects
Online AccessGet full text
ISSN0256-307X
1741-3540
DOI10.1088/0256-307X/32/10/107901

Cover

More Information
Summary:We demonstrate a method of fabricating through micro-holes and micro-hole arrays in silicon using femtosecond laser irradiation and selective chemical etching. The micro-hole formation mechanism is identified as the chemical reaction of the femtosecond laser-induced structure change zone and hydrofluoric acid solution. The morphologies of the through micro-holes and micro-hole arrays are characterized by using scanning electronic microscopy, The effects of the pulse number on the depth and diameter of the holes are investigated. Honeycomb arrays of through micro-holes fabricated at different laser powers and pulse numbers are demonstrated.
Bibliography:11-1959/O4
We demonstrate a method of fabricating through micro-holes and micro-hole arrays in silicon using femtosecond laser irradiation and selective chemical etching. The micro-hole formation mechanism is identified as the chemical reaction of the femtosecond laser-induced structure change zone and hydrofluoric acid solution. The morphologies of the through micro-holes and micro-hole arrays are characterized by using scanning electronic microscopy, The effects of the pulse number on the depth and diameter of the holes are investigated. Honeycomb arrays of through micro-holes fabricated at different laser powers and pulse numbers are demonstrated.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0256-307X
1741-3540
DOI:10.1088/0256-307X/32/10/107901