The influence of laser etching biomimicking configuration on the strength of metal-plastic connection

Abstract This study uses a laser to etch biomimicking locking patterns on the surface of 304 stainless steel to strengthen the connection between metal-plastic products. Under heat and pressure from the device, the plastic melts into the pattern and coalesces it, while the burrs formed from the etch...

Full description

Saved in:
Bibliographic Details
Published inMaterials research express Vol. 9; no. 5; pp. 56520 - 56533
Main Authors Liu, Fengde, Xu, Xiaoni, Liu, Jiaming, Fan, Haiqi, Huang, Genzhe, Zhang, Hong
Format Journal Article
LanguageEnglish
Published Bristol IOP Publishing 01.05.2022
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Abstract This study uses a laser to etch biomimicking locking patterns on the surface of 304 stainless steel to strengthen the connection between metal-plastic products. Under heat and pressure from the device, the plastic melts into the pattern and coalesces it, while the burrs formed from the etching process lock the joint of the metal-plastic. Three biomimicking configurations, honeycomb, leaf vein, and dragonfly head-and-neck hair interlocking, are studied. As shear strength determines the connection strength, we simulate the tensile-shearing process of stainless steel and plastic connectors of the three biomimicking configurations on ABAQUS, and predict the effects of the configurations on their connection strength. Experiments show that the plastic and metal are effectively connected at a heating temperature of 400 °C and a pressure of 70 kN. When the burr rate is 7.66% and the coverage rate is 29.4 ± 0.5%, the three biomimicking connectors break at the plastic base material, and the dragonfly head-and-neck hair interlocking configuration can withstand a shear force of 942 ± 9.23 N.
Bibliography:MRX-125311.R1
ISSN:2053-1591
2053-1591
DOI:10.1088/2053-1591/ac6e32